• Home
  • About

GIScience News Blog

News of Heidelberg University’s GIScience Research Group.

Feed on
Posts
Comments
« GIScience group members at the ISPRS Geospatial Week 2017 in Wuhan, China
Call for papers - PFGK18 : Photogrammetrie - Fernerkundung - Geoinformatik - Kartographie - 2018 »

Open land cover from OpenStreetMap and remote sensing

Sep 27th, 2017 by GIScienceHD

In a recently published study (1), we produced a web based land use land cover (LULC) product based on OSM tags which are constantly updated by contributors/volunteers, and present a Remote Sensing based solution when tags were absent for a test site. We harness the combined benefit of an open source and ever-growing machine generated remote sensing time series, and thousands of people contributing land data every day. RS data were used as a source of information to extrapolate LC information provided by OSM tags into areas absent of such tags, where known areas were used as training to classify unknown areas. Three research questions were addressed:

  • What tags and relations in OSM can be used to create LULC classes from the CLC?
  • Can an open source LC product have complete coverage despite VGI’s spatial incompleteness?
  • How accurate is this LC product, and how does it compare to other existing products?

OpenStreetMap (OSM) tags were used to produce a global Open Land Cover (OLC) product with fractional data gaps available at osmlanduse.org. Data gaps in the global OLC map were filled for a case study in Heidelberg, Germany using free remote sensing data, which resulted in a land cover (LC) prototype with complete coverage in this area. Sixty tags in the OSM were used to allocate a Corine Land Cover (CLC) level 2 land use classification to 91.8% of the study area, and the remaining gaps were filled with remote sensing data. For this case study, complete are coverage OLC overall accuracy was estimated 87%, which performed better than the CLC product (81% overall accuracy) of 2012. Spatial thematic overlap for the two products was 84%. OLC was in large parts found to be more detailed than CLC, particularly when LC patterns were heterogeneous, and outperformed CLC in the classification of 12 of the 14 classes. Our OLC product represented data created in different periods; 53% of the area was 2011–2016, and 46% of the area was representative of 2016–2017.

http://osmlanduse.org

EU H2020 Project LandSense

New: (1)

Schultz, M.; Auer, A.; Voss, J. Carter,S.; Zipf, A. (2017): Open land cover from OpenStreetMap and remote sensing. International Journal of Applied Earth Observation and Geoinformation. Volume 63, December 2017, Pages 206-213. https://doi.org/10.1016/j.jag.2017.07.014

Related earlier work:

Jokar Arsanjani, J., Mooney, P., Zipf, A., Schauss, A., (2015): Quality assessment of the contributed land use information from OpenStreetMap versus authoritative datasets. In: Jokar Arsanjani, J., Zipf, A., Mooney, P., Helbich, M., OpenStreetMap in GIScience: experiences, research, applications. ISBN:978-3-319-14279-1, PP. 37-58, Springer Press.

Jokar Arsanjani, J., Helbich, M., Bakillah, M., Hagenauer, J., & Zipf, A. (2013). Toward mapping land-use patterns from volunteered geographic information. International Journal of Geographical Information Science, 2264-2278. DOI:10.1080/13658816.2013.800871.

Dorn, H., Törnros, T. & Zipf, A. (2015): Quality Evaluation of VGI using Authoritative Data – A Comparison with Land Use Data in Southern Germany. ISPRS International Journal of Geo-Information. Vol 4(3), pp. 1657-1671, doi: 10.3390/ijgi4031657

Ballatore, A. and Zipf, A. (2015): A Conceptual Quality Framework for Volunteered Geographic Information. COSIT - CONFERENCE ON SPATIAL INFORMATION THEORY XII. October 12-16, 2015. Santa Fe, New Mexico, USA. Lecture Notes in Computer Science, pp. 1-20.

Törnros, T., Dorn, H., Hahmann, S., and Zipf, A. (2015): Uncertainties of completeness measures in OpenStreetMap - A Case Study for buildings in a medium-sized German city, ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., II-3/W5, 353-357, doi:10.5194/isprsannals-II-3-W5-353-2015.

Fan H., Zipf A., Fu Q. and Neis P. 2014. Quality assessment for building footprints data on OpenStreetMap. In: International Journal of Geographical Information Science. DOI: 10.1080/13658816.2013.867495

Tags: classification, land use/land cover classification, landuse, LULC, OSM, OSMlanduse, remote sensing

Posted in OSM, Publications, Services

Comments are closed.

  • About

    GIScience News Blog
    News of Heidelberg University’s GIScience Research Group.
    There are 1,484 Posts and 0 Comments so far.

  • Meta

    • Log in
    • Entries RSS
    • Comments RSS
    • WordPress.org
  • Recent Posts

    • Successful PhD Defense by Amin Mobasheri on OSM quality enrichment for wheelchair routing
    • New paper published about the OSM Sketch Map Tool
    • Open Data + Open Software - A perfect match
    • Tagging the main entrances of public buildings based on OpenStreetMap and binary imbalanced learning
    • Press release: Understanding the Spatial and Temporal Dimensions of Landscape Dynamics
  • Tags

    3D 3DGEO Big Spatial Data CAP4Access Citizen Science Colloquium crisis mapping Crowdsourcing data quality disaster DisasterMapping GeoNet.MRN GIScience heigit HOT humanitarian Humanitarian OpenStreetMap team intrinsic quality analysis landuse laser scanning Lidar Mapathon MapSwipe MissingMaps Missing Maps ohsome ohsome example Open data openrouteservice OpenStreetMap OSM OSM History Analytics OSMlanduse Quality quality analysis remote sensing routing social media spatial analysis Teaching terrestrial laser scanning Twitter VGI Wheelchair Navigation Workshop
  • Archives

    • March 2021
    • February 2021
    • January 2021
    • December 2020
    • November 2020
    • October 2020
    • September 2020
    • August 2020
    • July 2020
    • June 2020
    • May 2020
    • April 2020
    • March 2020
    • February 2020
    • January 2020
    • December 2019
    • November 2019
    • October 2019
    • September 2019
    • August 2019
    • July 2019
    • June 2019
    • May 2019
    • April 2019
    • March 2019
    • February 2019
    • January 2019
    • December 2018
    • November 2018
    • October 2018
    • September 2018
    • August 2018
    • July 2018
    • June 2018
    • May 2018
    • April 2018
    • March 2018
    • February 2018
    • January 2018
    • December 2017
    • November 2017
    • October 2017
    • September 2017
    • August 2017
    • July 2017
    • June 2017
    • May 2017
    • April 2017
    • March 2017
    • February 2017
    • January 2017
    • December 2016
    • November 2016
    • October 2016
    • September 2016
    • August 2016
    • July 2016
    • June 2016
    • May 2016
    • April 2016
    • March 2016
    • February 2016
    • January 2016
    • December 2015
    • November 2015
    • October 2015
    • September 2015
    • August 2015
    • July 2015
    • June 2015
    • May 2015
    • April 2015
    • March 2015
    • February 2015
    • January 2015
    • December 2014
    • November 2014
    • October 2014
    • September 2014
    • August 2014
    • July 2014
    • June 2014
    • May 2014
    • April 2014
    • March 2014
    • February 2014
    • January 2014
    • December 2013
    • November 2013
    • October 2013
    • September 2013
    • August 2013
    • July 2013
    • June 2013
    • May 2013
    • April 2013
  •  

    September 2017
    M T W T F S S
    « Aug   Oct »
     123
    45678910
    11121314151617
    18192021222324
    252627282930  
  • Recent Comments

    GIScience News Blog CC by-nc-sa Some Rights Reserved.

    Free WordPress Themes | Fresh WordPress Themes