• Home
  • About

GIScience News Blog

News of Heidelberg University’s GIScience Research Group.

Feed on
Posts
Comments
« Empower Humanitarian Mapping with Deep Neural Networks to Detect Human Settlements
Brand new 3DGeo logo! »

Analysing semantic associations in VGI data

Mar 7th, 2019 by Sascha Fendrich

Volunteered Geographic Information (VGI) such as OpenStreetMap (OSM) can be a rich resource for many applications. Therefor VGI-projects have to mitigate between the requirements of the the volunteers and the machines. On the one hand, the data format should be simple and general in order to make contributing to the project easy for the volunteers. On the other hand, processing the data with machines benefits from rich data structures with formally defined meanings. Unfortunately it is difficult to serve both purposes at the same time. Researchers at HeiGIT bridge the gap between volunteers and machines by teaching machines to find semantic associations in VGI data.

For instance, OSM captures the meaning of its data with key-value-pairs. Given the key "building" and the value "residential" we can form the key-value-pair "building=residential" denoting that the data element represents a building of type residential. For us humans, this simple structure is easy to understand. It is obvious that "addr:housenumber=45" and "addr:street=Berliner Straße" are parts of an address because we know much about how addresses are composed from smaller parts. But how does the machine know that housenumbers and streets are related?

To teach the machine about such relations, we employ a technique called association rule learning. By analyzing which keys occur together frequently, we can derive association rules such as "addr:housenumber ⇒ addr:street". This rule means that, typically, objects annotated with a housenumber are also annotated with a street. Hence, the machine is able to infer an association between the two keys from the frequency of their cooccurrence.

When thinking about data quality, the exceptions to such a rule are even more interesting than the rules themselves. For example, we found many exceptions to the above rule in the town of Weinheim as highlighted in the figure. While single exceptions may be due to errors in the data, there is probably a systematic reason for the exceptions in this case. In particular, it is important that applications know about such systematic differences. For example, a geocoder that maps addresses to geographic coordinates on the Earth’s surface must know that the addresses are annotated differently in Weinheim.

Buildings in Weinheim

Buildings in Weinheim violating the rule addr:housenumber ⇒ addr:street.

Tags: data mining, data quality, OSM

Posted in Uncategorized

Comments are closed.

  • About

    GIScience News Blog
    News of Heidelberg University’s GIScience Research Group.
    There are 1,674 Posts and 0 Comments so far.

  • Meta

    • Log in
    • Entries RSS
    • Comments RSS
    • WordPress.org
  • Recent Posts

    • New paper on the automatic characterization of surface activities from 4D point clouds
    • OSHDB Version 1.0 Has Arrived
    • Job Opening for Postdoc / Senior Researcher on OpenStreetMap Road Quality Analysis
    • Geography Awareness Week 14.-19.11.2022
    • Open Data: Multi-platform point clouds and orthophotos of the inland dune in Sandhausen
  • Tags

    3D 3DGEO Big Spatial Data CAP4Access Citizen Science Conference crisis mapping Crowdsourcing data quality deep learning disaster DisasterMapping GeoNet.MRN GIScience heigit HOT humanitarian humanitarian mapping Humanitarian OpenStreetMap team intrinsic quality analysis landuse laser scanning Lidar machine-learning Mapathon MapSwipe MissingMaps Missing Maps ohsome ohsome example Open data openrouteservice OpenStreetMap OSM OSM History Analytics Public Health Quality quality analysis remote sensing routing social media spatial analysis Teaching VGI Workshop
  • Archives

    • December 2022
    • November 2022
    • October 2022
    • September 2022
    • August 2022
    • July 2022
    • June 2022
    • May 2022
    • April 2022
    • March 2022
    • February 2022
    • January 2022
    • December 2021
    • November 2021
    • October 2021
    • September 2021
    • August 2021
    • July 2021
    • June 2021
    • May 2021
    • April 2021
    • March 2021
    • February 2021
    • January 2021
    • December 2020
    • November 2020
    • October 2020
    • September 2020
    • August 2020
    • July 2020
    • June 2020
    • May 2020
    • April 2020
    • March 2020
    • February 2020
    • January 2020
    • December 2019
    • November 2019
    • October 2019
    • September 2019
    • August 2019
    • July 2019
    • June 2019
    • May 2019
    • April 2019
    • March 2019
    • February 2019
    • January 2019
    • December 2018
    • November 2018
    • October 2018
    • September 2018
    • August 2018
    • July 2018
    • June 2018
    • May 2018
    • April 2018
    • March 2018
    • February 2018
    • January 2018
    • December 2017
    • November 2017
    • October 2017
    • September 2017
    • August 2017
    • July 2017
    • June 2017
    • May 2017
    • April 2017
    • March 2017
    • February 2017
    • January 2017
    • December 2016
    • November 2016
    • October 2016
    • September 2016
    • August 2016
    • July 2016
    • June 2016
    • May 2016
    • April 2016
    • March 2016
    • February 2016
    • January 2016
    • December 2015
    • November 2015
    • October 2015
    • September 2015
    • August 2015
    • July 2015
    • June 2015
    • May 2015
    • April 2015
    • March 2015
    • February 2015
    • January 2015
    • December 2014
    • November 2014
    • October 2014
    • September 2014
    • August 2014
    • July 2014
    • June 2014
    • May 2014
    • April 2014
    • March 2014
    • February 2014
    • January 2014
    • December 2013
    • November 2013
    • October 2013
    • September 2013
    • August 2013
    • July 2013
    • June 2013
    • May 2013
    • April 2013
  •  

    March 2019
    M T W T F S S
    « Feb   Apr »
     123
    45678910
    11121314151617
    18192021222324
    25262728293031
  • Recent Comments

    GIScience News Blog CC by-nc-sa Some Rights Reserved.

    Free WordPress Themes | Fresh WordPress Themes