• Home
  • About

GIScience News Blog

News of Heidelberg University’s GIScience Research Group.

Feed on
Posts
Comments
« openrouteservice for Disaster Management: Response to Cyclone Idai
Kick-off meeting of BMBF/MOST project “ER3DS” at Heidelberg University »

How to become ohsome part 4: handling a snake in a notebook on another planet

Mar 28th, 2019 by Fabian Kowatsch

Welcome back to a new episode of how to become ohsome. Yes, you’ve read the heading correctly. We are really talking about a snake in a notebook on another planet. If you are familiar with one of the most used programming languages in the GIS world, you might already know by now which snake is meant here. We will show you in a Jupyter Notebook how you can use Python to make ohsome queries and visualizations in one go. And we will do that through using our global ohsome API instance. In case you’ve just read the combination of “global” and “ohsome” for the first time, better get up-to-date and read this blog post.

As already mentioned, Python is a widely used programming language, especially in the GIS world, to perform spatial analysis and create visualizations like diagrams. Combining Python code, explanations and visualizations in one go, a Jupyter Notebook is a useful tool to achieve just that. It is already in use within other projects in HeiGIT (e.g. avoid obstacles with ORS). So we thought it was time to make Jupyter Notebooks ohsome.

To give you a little teaser of what is in that notebook, the following shows a visualization plus a piece of Python code that is used to create it. The diagram displays the count of OSM elements having the OSM tag building for different points in time for the three cities Heidelberg, Mannheim and Ludwigshafen.

And here is a part of the Python code that is used in the notebook to create the visualization above:

data = [trace1, trace2, trace3]
layout = go.Layout(
   title = 'Number of OSM buildings in Heidelberg, Mannheim and Ludwigshafen',
   barmode = 'group',
   legend = dict(orientation = "h")
)
fig = go.Figure(data = data, layout = layout)
py.iplot(fig, filename = 'groupBy')

The complete Jupyter Notebook with all the code and explanations can be found here. As always, if you want to give us feedback or have any questions, info@heigit.org is the best way to get in touch with us. Further Jupyter Notebooks with more examples will follow soon. Stay ohsome!

Tags: become-ohsome, Big Spatial Data, heigit, intrinsic quality analysis, ohsome, ohsome example, oshdb, OSM, OSM History Analytics

Posted in OSM, Services, Software

Comments are closed.

  • About

    GIScience News Blog
    News of Heidelberg University’s GIScience Research Group.
    There are 1,484 Posts and 0 Comments so far.

  • Meta

    • Log in
    • Entries RSS
    • Comments RSS
    • WordPress.org
  • Recent Posts

    • Successful PhD Defense by Amin Mobasheri on OSM quality enrichment for wheelchair routing
    • New paper published about the OSM Sketch Map Tool
    • Open Data + Open Software - A perfect match
    • Tagging the main entrances of public buildings based on OpenStreetMap and binary imbalanced learning
    • Press release: Understanding the Spatial and Temporal Dimensions of Landscape Dynamics
  • Tags

    3D 3DGEO Big Spatial Data CAP4Access Citizen Science Colloquium crisis mapping Crowdsourcing data quality disaster DisasterMapping GeoNet.MRN GIScience heigit HOT humanitarian Humanitarian OpenStreetMap team intrinsic quality analysis landuse laser scanning Lidar Mapathon MapSwipe MissingMaps Missing Maps ohsome ohsome example Open data openrouteservice OpenStreetMap OSM OSM History Analytics OSMlanduse Quality quality analysis remote sensing routing social media spatial analysis Teaching terrestrial laser scanning Twitter VGI Wheelchair Navigation Workshop
  • Archives

    • March 2021
    • February 2021
    • January 2021
    • December 2020
    • November 2020
    • October 2020
    • September 2020
    • August 2020
    • July 2020
    • June 2020
    • May 2020
    • April 2020
    • March 2020
    • February 2020
    • January 2020
    • December 2019
    • November 2019
    • October 2019
    • September 2019
    • August 2019
    • July 2019
    • June 2019
    • May 2019
    • April 2019
    • March 2019
    • February 2019
    • January 2019
    • December 2018
    • November 2018
    • October 2018
    • September 2018
    • August 2018
    • July 2018
    • June 2018
    • May 2018
    • April 2018
    • March 2018
    • February 2018
    • January 2018
    • December 2017
    • November 2017
    • October 2017
    • September 2017
    • August 2017
    • July 2017
    • June 2017
    • May 2017
    • April 2017
    • March 2017
    • February 2017
    • January 2017
    • December 2016
    • November 2016
    • October 2016
    • September 2016
    • August 2016
    • July 2016
    • June 2016
    • May 2016
    • April 2016
    • March 2016
    • February 2016
    • January 2016
    • December 2015
    • November 2015
    • October 2015
    • September 2015
    • August 2015
    • July 2015
    • June 2015
    • May 2015
    • April 2015
    • March 2015
    • February 2015
    • January 2015
    • December 2014
    • November 2014
    • October 2014
    • September 2014
    • August 2014
    • July 2014
    • June 2014
    • May 2014
    • April 2014
    • March 2014
    • February 2014
    • January 2014
    • December 2013
    • November 2013
    • October 2013
    • September 2013
    • August 2013
    • July 2013
    • June 2013
    • May 2013
    • April 2013
  •  

    March 2019
    M T W T F S S
    « Feb   Apr »
     123
    45678910
    11121314151617
    18192021222324
    25262728293031
  • Recent Comments

    GIScience News Blog CC by-nc-sa Some Rights Reserved.

    Free WordPress Themes | Fresh WordPress Themes