• Home
  • About

GIScience News Blog

News of Heidelberg University’s GIScience Research Group.

Feed on
Posts
Comments
« Winner of the 2019 Climathon Heidelberg
HeiGIT at International Dialogue Platform on Anticipatory Action »

New DFG project: IdealVGI - Deep Learning with OSM

Nov 4th, 2019 by GIScienceHD

Recently a new DFG project proposal was accepted to the GIScience Research Group Heidelberg within the DFG priority programme VisVGI (Volunteered Geographic Information: Interpretation, Visualisation and Social Computing” [SPP 1894]). It is joint collaboration project together with Prof. Begüm Demir from TU Berlin.

IDEAL-VGI: Information Discovery from Big Earth Observation Data Archives by Learning from Volunteered Geographic Information

During the last decade, huge amount of remote sensing (RS) images have been acquired, leading to massive Earth Observation (EO) data archives from which mining and retrieving useful information are challenging. Volunteered Geographic Information (VGI) such as OpenStreetMap (OSM) can offer rich geometric and semantic information that goes beyond land use tags, which can be very beneficial for accessing and extracting vital information for observing Earth from big Earth Observation archives. However, user-provided tags within OSM can be noisy, incomplete and redundant.

The IDEAL-VGI project aims address very important scientific and practical problems by focusing on the main challenges of:

1) VGI for land use classification which are: a missing framework to exploit the rich semantic information present at different scales and the uncertainty of OSM derived land use classes.
2) Big EO data, which are: RS image characterization, indexing and search from massive archives.

To this end, we will develop innovative methods, which can significantly improve the state-of-the-art both in the theory and in the tools currently available. In particular, novel methods will be developed, aiming to:

  1. identification of the importance, uncertainty and quality of different OSM derived features;
  2. enhancing methods for better assessment of quality to promote relevant semantic content of OSM and integration of supporting complementary VGI data streams;
  3. developing machine learning/deep learning algorithms in the framework of RS image classification for automatic OSM tag refinement and assignment;
  4. developing RS image classification, search and retrieval methods that consider OSM tags with their uncertainty information;
  5. improve both OSM semantic land use description as well as remote sensing image classification based on a comparison between the two classification approaches;
  6. make full use of VGI to generate accurate annotated data sets and improve accuracy of labelling, which should contribute to more convincing training data sets.

The IDEAL-VGI will contribute to the following research domains indicated in the priority programme:

1) Information Retrieval and Analysis of VGI (machine learning and algorithmic interpretation for VGI and quality assessment and uncertainty analysis of VGI.
2) Active Participation, Social Context and Privacy Awareness (information management and decision analysis based on VGI data.

We hope to start the project soon and are looking forward to the collaboration with colleagues from TU Berlin.

RELATED PUBLICATIONS:
  • Chen, J., Y. Zhou, A. Zipf and H. Fan (2018):Deep Learning from Multiple Crowds: A Case Study of Humanitarian Mapping. IEEE Transactions on Geoscience and Remote Sensing (TGRS). 1-10. https://doi.org/10.1109/TGRS.2018.2868748
  • Herfort, B., Li, H., Fendrich, S., Lautenbach, S., Zipf, A. (2019): Mapping Human Settlements with Higher Accuracy and Less Volunteer Efforts by Combining Crowdsourcing and Deep Learning. Remote Sensing 11(15), 1799. https://doi.org/10.3390/rs11151799
  • Li, H., Herfort, B., Zipf, A. (2019): Estimating OpenStreetMap Missing Built-up Areas using Pre-trained Deep Neural Networks. Proceedings of the 22nd AGILE Conference on Geographic Information Science, Limassol, Cyprus.
  • Raifer, M., Troilo, R., Kowatsch, F., Auer, M., Loos, L., Marx, S., Przybill, K., Fendrich, S., Mocnik, F.-B.& Zipf, A. (2019): OSHDB: a framework for spatio-temporal analysis of OpenStreetMap history data.Open Geospatial Data, Software and Standards 2019 4:3. https://doi.org/10.1186/s40965-019-0061-3
  • Degrossi L.C., J. Porto de Albuquerque, R. dos Santos Rocha, A. Zipf (2018): A taxonomy of quality assessment methods for volunteered and crowdsourced geographic information. Transactions in GIS (TGIS). Wiley. DOI:10.1111/tgis.12329. 22(2), 542–560.
  • Yan, Y., Schultz, M., Zipf, A. (2019): An exploratory analysis of usability of Flickr tags for land use/land cover attribution, Geo-spatial Information Science (GSIS), Taylor & Francis. https://doi.org/10.1080/10095020.2018.1560044
  • Barron, C., Neis, P. & Zipf, A. (2013): A Comprehensive Framework for Intrinsic OpenStreetMap Quality Analysis. , Transactions in GIS, DOI: 10.1111/tgis.12073.
  • Mocnik, F.-B., Zipf, A., Raifer, M. (2017): The OpenStreetMap folksonomy and its evolution. Geo-spatial Information Science. DOI: 10.1080/10095020.2017.1368193.
  • Ballatore, A. and Zipf, A. (2015): A Conceptual Quality Framework for Volunteered Geographic Information. COSIT - CONFERENCE ON SPATIAL INFORMATION THEORY XII. October 12-16, 2015. Santa Fe, New Mexico, USA. Lecture Notes in Computer Science, pp. 1-20.
  • Dorn, H., Törnros, T. & Zipf, A. (2015): Quality Evaluation of VGI using Authoritative Data – A Comparison with Land Use Data in Southern Germany. ISPRS International Journal of Geo-Information. Vol 4(3), pp. 1657-1671, doi: 10.3390/ijgi4031657
  • Jokar Arsanjani, J., Mooney, P., Helbich, M., Zipf, A., (2015): An exploration of future patterns of the contributions to OpenStreetMap and development of a Contribution Index, Transactions in GIS, 19(6): 896–914. John Wiley & Sons. DOI: 10.1111/tgis.12139.
  • Jokar Arsanjani, J., Helbich, M., Bakillah, M., Hagenauer,J. & Zipf, A. (2013): Toward mapping land-use patterns from volunteered geographic information. International Journal of Geographical Information Science (IJGIS). Taylor & Francis. DOI: 10.1080/13658816.2013.800871.
  • Fan, H., Zipf, A., Fu, Q. & Neis, P. (2014): Quality assessment for building footprints data on OpenStreetMap. International Journal of Geographical Information Science (IJGIS). DOI: 10.1080/13658816.2013.867495.

Tags: artificial intelligence, convolutional neural networks, data quality, deep learning, deepVGI, Earth Observation, intrinsic quality analysis, landuse, OpenStreetMap, OSM, OSMlanduse, quality analysis, remote sensing, VGI, Volunteered Geographic Information

Posted in OSM, Press release, Research, VGI Group

Comments are closed.

  • About

    GIScience News Blog
    News of Heidelberg University’s GIScience Research Group.
    There are 1,674 Posts and 0 Comments so far.

  • Meta

    • Log in
    • Entries RSS
    • Comments RSS
    • WordPress.org
  • Recent Posts

    • New paper on the automatic characterization of surface activities from 4D point clouds
    • OSHDB Version 1.0 Has Arrived
    • Job Opening for Postdoc / Senior Researcher on OpenStreetMap Road Quality Analysis
    • Geography Awareness Week 14.-19.11.2022
    • Open Data: Multi-platform point clouds and orthophotos of the inland dune in Sandhausen
  • Tags

    3D 3DGEO Big Spatial Data CAP4Access Citizen Science Conference crisis mapping Crowdsourcing data quality deep learning disaster DisasterMapping GeoNet.MRN GIScience heigit HOT humanitarian humanitarian mapping Humanitarian OpenStreetMap team intrinsic quality analysis landuse laser scanning Lidar machine-learning Mapathon MapSwipe MissingMaps Missing Maps ohsome ohsome example Open data openrouteservice OpenStreetMap OSM OSM History Analytics Public Health Quality quality analysis remote sensing routing social media spatial analysis Teaching VGI Workshop
  • Archives

    • December 2022
    • November 2022
    • October 2022
    • September 2022
    • August 2022
    • July 2022
    • June 2022
    • May 2022
    • April 2022
    • March 2022
    • February 2022
    • January 2022
    • December 2021
    • November 2021
    • October 2021
    • September 2021
    • August 2021
    • July 2021
    • June 2021
    • May 2021
    • April 2021
    • March 2021
    • February 2021
    • January 2021
    • December 2020
    • November 2020
    • October 2020
    • September 2020
    • August 2020
    • July 2020
    • June 2020
    • May 2020
    • April 2020
    • March 2020
    • February 2020
    • January 2020
    • December 2019
    • November 2019
    • October 2019
    • September 2019
    • August 2019
    • July 2019
    • June 2019
    • May 2019
    • April 2019
    • March 2019
    • February 2019
    • January 2019
    • December 2018
    • November 2018
    • October 2018
    • September 2018
    • August 2018
    • July 2018
    • June 2018
    • May 2018
    • April 2018
    • March 2018
    • February 2018
    • January 2018
    • December 2017
    • November 2017
    • October 2017
    • September 2017
    • August 2017
    • July 2017
    • June 2017
    • May 2017
    • April 2017
    • March 2017
    • February 2017
    • January 2017
    • December 2016
    • November 2016
    • October 2016
    • September 2016
    • August 2016
    • July 2016
    • June 2016
    • May 2016
    • April 2016
    • March 2016
    • February 2016
    • January 2016
    • December 2015
    • November 2015
    • October 2015
    • September 2015
    • August 2015
    • July 2015
    • June 2015
    • May 2015
    • April 2015
    • March 2015
    • February 2015
    • January 2015
    • December 2014
    • November 2014
    • October 2014
    • September 2014
    • August 2014
    • July 2014
    • June 2014
    • May 2014
    • April 2014
    • March 2014
    • February 2014
    • January 2014
    • December 2013
    • November 2013
    • October 2013
    • September 2013
    • August 2013
    • July 2013
    • June 2013
    • May 2013
    • April 2013
  •  

    November 2019
    M T W T F S S
    « Oct   Dec »
     123
    45678910
    11121314151617
    18192021222324
    252627282930  
  • Recent Comments

    GIScience News Blog CC by-nc-sa Some Rights Reserved.

    Free WordPress Themes | Fresh WordPress Themes