• Home
  • About

GIScience News Blog

News of Heidelberg University’s GIScience Research Group.

Feed on
Posts
Comments
« Keynote at McGILL GIS DAY: Analysing and Improving OpenStreetMap for Humanitarian Aid with Data Mining and GeoAI
Find the route to your nearest Covid-19 vaccination center in Germany — new App by HeiGIT based on OpenStreetMap and openrouteservice »

ohsome street network analysis part 1

Jan 18th, 2021 by Fabian Kowatsch

Here we go again: The first #ohsome blog post of 2021. This time, one of our new student assistants Sarah was dealing with street networks and their quality in order to find out which of the selected regions has the most detailed info in OpenStreetMap as well as the best data consistency over the past 10 years. The regions of interest are different european cities of roughly the same size and population (Bern, Bordeaux, Luxembourg, Maastricht & Regensburg).

We have conducted two analyses on the given areas of interest: relative length of the street network (length of streets divided by size of region) and an attributive completeness analysis looking at the length of streets having information about the speed through the tag “maxspeed” compared to those without. In each of the two analysis, we compared the regions with each other. At the end of the second analysis coming in another blog post next week, we will then crown a winner. Let’s jump right into the first analysis!

Data:

The necessary OSM data is downloaded as usual from our global ohsome API instance. You can get the spatial data set used as the area of interest in our requests via this website. There is also a GeoJSON-file in the snippet that you can find here, which already contains the specific boundaries used in this analysis, as well as the used cURL requests and visualizations.

Request:

The first request gives the evolution of the density of the street network within the boundaries of 5 cities over the past 10 years. You are going to need to send a POST request for that dataset. We chose csv as output format as it is easy to load and further process in e.g. spreadsheet programs.

Parameters:

format = csv

filter = type:way and (highway in (motorway, motorway_link, trunk, trunk_link, primary, primary_link, secondary, secondary_link, tertiary, tertiary_link, unclassified, residential, living_street, pedestrian) or (highway=service and service=alley))

time = 2010-12-01/2020-12-01/P1M

Data exploration:

The first graphic shows the development of the density of the street network in each city over the years 2010-2020.

When looking at the overall development of density values for Bordeaux having the highest values in our analysis, one can conclude that the starting value was relatively low, though the highest in comparison to all other examined regions. The dataset shows moderate growth until April 2012 with a minor drop in August followed by a rather strong increase until December 2012. More or less stable values have set in in July 2014.

The meeting point of the Maastricht dataset with the mean density value (9419.37 m/km2) takes place between December 2016 and January 2017. Before that the values are below said mean and have been over it ever since. A minimum density was reached in April of 2014 with values continuously decreasing with some stronger ‚jumps’. Subsequent to this a short phase of increasing values which ends up in a stagnation around the winter months of the same year. The trend remains positive until it stagnates in July 2018 and displays only a slight decrease for the rest of the time.

The dataset for the city of Bern, displayed in a green line with triangles, also begins with a density below the mean value (8398.486 m/km2) but has a quick development to values above mean in February 2011 already. These higher values, including the maximum values from July 2013 to May 2015, remain consistent until about August 2017 from which they fall and stay below mean again. The minimum values were reached in January of 2019 and only increased very slightly ever since.

For Luxembourg, represented by the blue line with circles, one can basically record a steady increase with a few minor collapses and a bigger jump between January and February 2011 and a phase of stagnation around May 2013. The last city we looked at was Regensburg which mainly had two phases of density development that were separated by a stronger increase during June 2015 - May 2016. The density values have been above mean (6949.04 m/km2) ever since August 2015. There have been some data imports for the cities, e.g. in May 2015 by the Vermessungsamt der Stadt Bern, but they do not appear to have a significant impact on the density data.

For the second part of the exploration, we created two bar charts, which display the percentual growth (top graphic) of each city from the first to last timestamp, as well as the absolute delta values for each city (bottom graphic):

As Bern is the only city with a negative development, it has the lowest value in both graphics. This probably indicates that the street network of this city was already well developed prior to the starting timestamp of this analysis. We chose to visualize both, the percentual and absolute numbers, as the percentage-growth was more suitable for looking at the individual development of each city, whilst the absolute numbers are good for a comparison of the overall development. This becomes especially obvious when looking at Bordeaux, which only has a moderate individual development but in context of absolute numbers it is the front runner of all cities.

User data:

We have also conducted a user analysis subsequent to the analysis of the density values and their development. The main outcome of said analysis was that there appears to be no connection between the differences in the density values in regards to the number of active users doing any kind of edits (create, modify, delete) on the streets. Nevertheless, the following bar chart gives you an overview on the min, mean and max values of the numbers of users for each city using again a monthly resolution. The highest number of users in one month was reached in Regensburg in June 2020 with 28 users and the lowest number was reached in Maastricht, where there wasn’t any activity on said streets in June of 2012.

Ranking

As we have said it initially, here you see a ranking of the five cities based on the analyzed data:

Overall density of street network

  1. Bordeaux
  2. Maastricht
  3. Bern
  4. Luxembourg
  5. Regensburg
Thanks for reading the first ohsome street network analysis blogpost. Whilst this week there was a final ranking, next weeks blogpost will take up on this analysis for the coronation ceremony for the region of the month. Furthermore, there will be yet another analysis dealing with maximum speed, which will be taken into account when looking for a winner. Will Bordeaux be able to keep the first spot and be crowned “ohsome street network city of the month”? Can Regensburg give the red flag of the last spot to another city? Stay tuned and check our blog again next week to find it out!

Background info:

the aim of the ohsome OpenStreetMap History Data Analytics Platform is to make OpenStreetMap’s full-history data more easily accessible for various kinds of OSM data analytics tasks, such as data quality analysis, on a regional, country-wide, or global scale. The ohsome API is one of its components, providing free and easy access to some of the functionalities of the ohsome platform via HTTP requests. Some intro can be found here:

  • ohsome general idea

  • ohsome general architecture

  • how to become ohsome blog series

  • how spatial joins queries work in the OpenStreetMap History Database OSHDB

Tags: become-ohsome, heigit, intrinsic quality analysis, ohsome, OSM, OSM History Analytics

Posted in Services, Software

Comments are closed.

  • About

    GIScience News Blog
    News of Heidelberg University’s GIScience Research Group.
    There are 1,675 Posts and 0 Comments so far.

  • Meta

    • Log in
    • Entries RSS
    • Comments RSS
    • WordPress.org
  • Recent Posts

    • Assessing road criticality and loss of healthcare accessibility during floods: the case of Cyclone Idai, Mozambique 2019
    • New paper on the automatic characterization of surface activities from 4D point clouds
    • OSHDB Version 1.0 Has Arrived
    • Job Opening for Postdoc / Senior Researcher on OpenStreetMap Road Quality Analysis
    • Geography Awareness Week 14.-19.11.2022
  • Tags

    3D 3DGEO Big Spatial Data CAP4Access Citizen Science Conference crisis mapping Crowdsourcing data quality deep learning disaster DisasterMapping GeoNet.MRN GIScience heigit HOT humanitarian humanitarian mapping Humanitarian OpenStreetMap team intrinsic quality analysis landuse laser scanning Lidar machine-learning Mapathon MapSwipe MissingMaps Missing Maps ohsome ohsome example Open data openrouteservice OpenStreetMap OSM OSM History Analytics Public Health Quality quality analysis remote sensing routing social media spatial analysis Teaching VGI Workshop
  • Archives

    • January 2023
    • December 2022
    • November 2022
    • October 2022
    • September 2022
    • August 2022
    • July 2022
    • June 2022
    • May 2022
    • April 2022
    • March 2022
    • February 2022
    • January 2022
    • December 2021
    • November 2021
    • October 2021
    • September 2021
    • August 2021
    • July 2021
    • June 2021
    • May 2021
    • April 2021
    • March 2021
    • February 2021
    • January 2021
    • December 2020
    • November 2020
    • October 2020
    • September 2020
    • August 2020
    • July 2020
    • June 2020
    • May 2020
    • April 2020
    • March 2020
    • February 2020
    • January 2020
    • December 2019
    • November 2019
    • October 2019
    • September 2019
    • August 2019
    • July 2019
    • June 2019
    • May 2019
    • April 2019
    • March 2019
    • February 2019
    • January 2019
    • December 2018
    • November 2018
    • October 2018
    • September 2018
    • August 2018
    • July 2018
    • June 2018
    • May 2018
    • April 2018
    • March 2018
    • February 2018
    • January 2018
    • December 2017
    • November 2017
    • October 2017
    • September 2017
    • August 2017
    • July 2017
    • June 2017
    • May 2017
    • April 2017
    • March 2017
    • February 2017
    • January 2017
    • December 2016
    • November 2016
    • October 2016
    • September 2016
    • August 2016
    • July 2016
    • June 2016
    • May 2016
    • April 2016
    • March 2016
    • February 2016
    • January 2016
    • December 2015
    • November 2015
    • October 2015
    • September 2015
    • August 2015
    • July 2015
    • June 2015
    • May 2015
    • April 2015
    • March 2015
    • February 2015
    • January 2015
    • December 2014
    • November 2014
    • October 2014
    • September 2014
    • August 2014
    • July 2014
    • June 2014
    • May 2014
    • April 2014
    • March 2014
    • February 2014
    • January 2014
    • December 2013
    • November 2013
    • October 2013
    • September 2013
    • August 2013
    • July 2013
    • June 2013
    • May 2013
    • April 2013
  •  

    January 2021
    M T W T F S S
    « Dec   Feb »
     123
    45678910
    11121314151617
    18192021222324
    25262728293031
  • Recent Comments

    GIScience News Blog CC by-nc-sa Some Rights Reserved.

    Free WordPress Themes | Fresh WordPress Themes