• Home
  • About

GIScience News Blog

News of Heidelberg University’s GIScience Research Group.

Feed on
Posts
Comments
« Humanitarian OSM Stats: How to monitor humanitarian mapping in the HOT Tasking Manager? - Part 4
A fresh new ORS maps client »

Flood Impact Assessment on Road Network and Healthcare Access at the example of Jakarta, Indonesia

Mar 12th, 2021 by Sven Lautenbach

Extreme natural events create catastrophic situations for cities and their populations. Due to climate change and anthropogenic activities, the number and intensity of these events has steadily increased at the global scale. Floods are the most common natural disaster worldwide, responsible for economic, social and life losses. Low-income countries have a death rate 23 times higher than countries with high financial resources and are therefore much more affected by the impacts.

Isabell Klipper studied how the 2013 flood in Jakarta, Indonesia affected the connectivity of the road network and accessibility to clinics and hospitals. The analysis was based on two connectivity indicators (betweenness centrality and harmonic closeness centrality) as well as on the isochrones functionality of the openrouteservice. In addition to OSM data flood data - kindly provided by HOT Indonesia - was used.

An intrinisc data quality analysis based on the ohsome API revealed a sufficient completeness for road infrastructure and clinics and hospitals. Bed capacity was available for ~60% of the hospitals and ~54% of the clinics.

OSM contributions for road network and health sites in Jakarta.

Betweenness centrality (BC) denotes the fraction of shortest paths which pass through the focal node between all node pairs. The higher the betweenness centrality value of a node, the more important the node in the network. Since travel times were used as weights, the BC measured the frequency at which the respective nodes were approached or crossed on the fastest routes. Nodes with a high betweenness value are crossed more frequently and are in this context important for a fast routing and traffic flow. An even spatial distribution of betweenness values indicates a resilient road network, since the maintenance of traffic does not depend on individual nodes and is therefore not affected by the failure of individual sections. A doubling in value implies that the node is passed twice as often.

Closeness centrality (CC) counts the reciprocal of the average distance from a specific node to any other nodes within the network. Since the classic formula cannot be used for disconnected graphs the harmonic closeness centrality was used. Nodes with a higher HC are closer to all other nodes and can therefor be reached by others best. In contrast to the BC, the results of the HC indicate which nodes can be reached most quickly on average for all existing nodes. Nodes with a higher closeness rating can therefore be regarded as important supply points as well as locations which can be reached quickly by all other nodes.

Nearly a quarter of all nodes and 25 percent of the edges were affected by the flood event, which split the network into one main graph and several subgraphs. 34,027 nodes, which were flooded and therefore no longer passable. Effects of the flood event on betweenness centrality where relatively small. A few nodes in the center of the city gained in betweenness centrality but on average the value decreased slightly from 0.00004 to 0.00002. Most of the nodes (~75 percent) did not change in value or only changed by a small amount of -/+0.0005, which means that these nodes had an increasing or decreasing traffic volume of up to 0.05 percent.

Effects of the flood event on HC were a bit more pronounced than for BC. More than 60 percent of the remaining 111,379 nodes changed their HC value by less than -/+0.2, which indicates that most of the nodes and the major part of the network, respectively, maintained its functionality regarding fast access. Strongest losses in HC value occurred in nodes located near the city border. On average the HC value decreased from 0.25 to 0.13.

flooded - for betweenness centrality the two lines cannot be distinguished due to the small difference in mean.

Histogram of BC and HC values for normal conditions and the flood event. The dashed lines represent the mean of the distribution: grey: normal, black: flooded - for betweenness centrality the two lines cannot be distinguished due to the small difference in mean.

Under normal conditions almost the entire area of the city of Jakarta had access to at least one hospital or one clinic within a 10 to 15 minute car drive. The flooding had direct as well as indirect impact on accessibility. Directly affected were those areas which were actively flooded and therefore no longer passable - in total 2.75 million inhabitants were living in those areas. Indirectly affected were those areas which still have access during a disaster compared to the normal scenario, but which required a longer journey time to the nearest hospital. In total 1.36 million inhabitants were affected by an increase in travel time to the nearest hospital  due to indirect effects of the flood event from up to 5 minutes to 5 to 10 minutes and 140,000 by an increase from 5 to 10 travel time to 10 to 15 minutes. With respect to the travel time to the nearest clinic the increase by indirect effects was less severe: around 60,000 inhabitants had to face an increase from up to 5 to 5 to 10 minutes.

(left) access to at least one hospital, (right) access to at least one clinic.

Amount of city population with healthcare access within specific time range: (left) access to at least one hospital, (right) access to at least one clinic.

The main roads near the city center provide under normal conditions access values of up to 10,000 beds within a 5-minute car drive. Bed availability in a five-minute drive decreased towards the administrative boundary. The flood, which was very pronounced in the north, leaded to a high loss of active supply. In addition, areas along the main transport axes were severer affected than the city center. The area east of the city center along the north-south main road experienced a reduction in the northern region by more than 0.1 beds per person per square kilometer. In the southern section, the flood caused changes of varying intensity. The area along the road junction, which connects the main roads running north-south and east-west, was predominantly affected by a change of -0.08 to more than -0.1 beds, whereas an increasing distance was associated with a lower decrease of -0.02 to -0.04 available hospital beds per person per square kilometer accessible within a 5-minute car drive. The area in the northern part of the city, between the directly flood affected areas, and the bordering area in the south (-0.02 to -0.04) was heavily affected, too, with a decrease of partly more than -0.1. The fourth heavily impacted region is located in the southwest in the outskirts of the city, along the main road, with a decrease in bed capacity per person per square kilometer of around -0.06 to -0.1.

Cumulative amount of available hospital beds per person per square kilometer accessible within a 5-minute car drive.

Cumulative amount of available hospital beds per person per square kilometer accessible within a 5-minute car drive.

The master thesis as well as the code for the analysis is available on github.

Related Work:

  • Updated OSM Healthcare in Senegal (2020)
  • Accessibility of covid-19 vaccination centers in Germany
  • Recent changes to OpenStreetMap healthcare infrastructure in India
  • Exploring OSM for healthcare access analysis in Sub-Saharan Africa
  • Analysing OSM Completeness of health facilities in Sub-Sahara Africa in ohsomeHeX
  • Geldsetzer, P.; Reinmuth, M.; Ouma, P. O., Lautenbach, S.; Okiro E. A.; Bärnighausen, T.; Zipf, A. Mapping physical access to health care for older adults in sub-Saharan Africa and implications for the COVID-19 response: a cross-sectional analysis. The Lancet Healthy Longevity. 2020;1(1):e32-e42.
  • Openrouteservice API: https://openrouteservice.org/
  • New Jupyter Notebook: Analysis of Access to Health Care using openrouteservice Isochrones API
  • Recent changes to OpenStreetMap healthcare infrastructure in India
  • Mapping physical access to health care for older adults in sub-Saharan Africa and implications for the COVID-19 response: a cross-sectional analysis
  • Find the route to your nearest Covid-19 vaccination center in Germany — new App by HeiGIT based on OpenStreetMap and openrouteservice
  • Accessibility to pharmacies in Germany with 15km Covid-19 restriction
  • Neis, P. & Zipf, A (2008): OpenRouteService.org is three times “Open”: Combining OpenSource, OpenLS and OpenStreetMaps. GIS Research UK (GISRUK 08). Manchester.

Tags: disaster, disaster risk management, humanitarian, humanitarian mapping, intrinsic quality analysis, ohsome, OpenRouteSerivce, OpenStreetMap, road network

Posted in Public Health, Research

Comments are closed.

  • About

    GIScience News Blog
    News of Heidelberg University’s GIScience Research Group.
    There are 1,674 Posts and 0 Comments so far.

  • Meta

    • Log in
    • Entries RSS
    • Comments RSS
    • WordPress.org
  • Recent Posts

    • New paper on the automatic characterization of surface activities from 4D point clouds
    • OSHDB Version 1.0 Has Arrived
    • Job Opening for Postdoc / Senior Researcher on OpenStreetMap Road Quality Analysis
    • Geography Awareness Week 14.-19.11.2022
    • Open Data: Multi-platform point clouds and orthophotos of the inland dune in Sandhausen
  • Tags

    3D 3DGEO Big Spatial Data CAP4Access Citizen Science Conference crisis mapping Crowdsourcing data quality deep learning disaster DisasterMapping GeoNet.MRN GIScience heigit HOT humanitarian humanitarian mapping Humanitarian OpenStreetMap team intrinsic quality analysis landuse laser scanning Lidar machine-learning Mapathon MapSwipe MissingMaps Missing Maps ohsome ohsome example Open data openrouteservice OpenStreetMap OSM OSM History Analytics Public Health Quality quality analysis remote sensing routing social media spatial analysis Teaching VGI Workshop
  • Archives

    • December 2022
    • November 2022
    • October 2022
    • September 2022
    • August 2022
    • July 2022
    • June 2022
    • May 2022
    • April 2022
    • March 2022
    • February 2022
    • January 2022
    • December 2021
    • November 2021
    • October 2021
    • September 2021
    • August 2021
    • July 2021
    • June 2021
    • May 2021
    • April 2021
    • March 2021
    • February 2021
    • January 2021
    • December 2020
    • November 2020
    • October 2020
    • September 2020
    • August 2020
    • July 2020
    • June 2020
    • May 2020
    • April 2020
    • March 2020
    • February 2020
    • January 2020
    • December 2019
    • November 2019
    • October 2019
    • September 2019
    • August 2019
    • July 2019
    • June 2019
    • May 2019
    • April 2019
    • March 2019
    • February 2019
    • January 2019
    • December 2018
    • November 2018
    • October 2018
    • September 2018
    • August 2018
    • July 2018
    • June 2018
    • May 2018
    • April 2018
    • March 2018
    • February 2018
    • January 2018
    • December 2017
    • November 2017
    • October 2017
    • September 2017
    • August 2017
    • July 2017
    • June 2017
    • May 2017
    • April 2017
    • March 2017
    • February 2017
    • January 2017
    • December 2016
    • November 2016
    • October 2016
    • September 2016
    • August 2016
    • July 2016
    • June 2016
    • May 2016
    • April 2016
    • March 2016
    • February 2016
    • January 2016
    • December 2015
    • November 2015
    • October 2015
    • September 2015
    • August 2015
    • July 2015
    • June 2015
    • May 2015
    • April 2015
    • March 2015
    • February 2015
    • January 2015
    • December 2014
    • November 2014
    • October 2014
    • September 2014
    • August 2014
    • July 2014
    • June 2014
    • May 2014
    • April 2014
    • March 2014
    • February 2014
    • January 2014
    • December 2013
    • November 2013
    • October 2013
    • September 2013
    • August 2013
    • July 2013
    • June 2013
    • May 2013
    • April 2013
  •  

    March 2021
    M T W T F S S
    « Feb   Apr »
    1234567
    891011121314
    15161718192021
    22232425262728
    293031  
  • Recent Comments

    GIScience News Blog CC by-nc-sa Some Rights Reserved.

    Free WordPress Themes | Fresh WordPress Themes