• Home
  • About

GIScience News Blog

News of Heidelberg University’s GIScience Research Group.

Feed on
Posts
Comments
« Job Opening for Postdoc / Senior Researcher on OpenStreetMap Road Quality Analysis
New paper on the automatic characterization of surface activities from 4D point clouds »

OSHDB Version 1.0 Has Arrived

Nov 28th, 2022 by Dominik Neumann

Featured Photo: Ohsome dashboard interface for Heidelberg, Germany.

In the words of Confucius, “The man who moves a mountain begins by carrying away small stones.” As we release OSHDB (OpenStreetMap History Database) Version 1.0, we look back at versions 0.5, 0.6, 0.7, and all the other small improvements to our historical OpenStreetMap database as the small stones allowing us to move the mountain.

The mountain itself was identified by our Scientific and Managing Director Prof. Dr. Alexander Zipf back in 2010. According to HeiGIT’s current product owner for the ohsome and big data team Benjamin Herfort, researchers at the time faced significant hurdles if they intended to study OSM data over time. While it was fairly straightforward to analyze contemporary developments in OSM, creating a framework for looking at the evolution of data proved complicated. “Every researcher had to find their own setup and their own way of crunching OSM data. That’s what we wanted to change.”

Prof. Zipf led the team in setting up a server so that researchers could probe historic OSM data without worrying about any setup and processes besides their study focus. With the release of OSHDB, users of historic OSM data were no longer required to be computer scientists, database engineers, or familiar with running a cluster. OSHDB would do that job for them through an intuitive API.

Since then, the changes to OSHDB have been small and meaningful, focusing on creating proper software through improved internal documentation and testing. Instead of adding any crazy features, releases have concentrated on well-functioning software to enable accessible analysis. Now, after five years of development and testing, the team is releasing OSHDB Version 1.0.

This version continues to allow users to visualize and explore the amount of data and contributions to OSM over time starting from the beginning of OSM itself. Not only are the features in the OSM History Data interesting in and of themselves, ranging from country borders to buildings and turn restrictions, but they also facilitate the investigation of data quality, regional quality comparisons, and allow for the computation of aggregated data statistics.

One of the most important aspects of the database is its usability. Two clicks on the ohsome dashboard allow any researcher, journalist, or citizen scientist to view the evolution of OSM data over time for any region. This temporal change can inform us about data quality as we evaluate saturation and check for currentness. In the case of Heidelberg, for example, the number of buildings has not significantly increased since 2012, at which point we may say that Heidelberg became saturated and data in the area is likely of a high quality. To draw such conclusions, we would also like to check for currentness, looking at when entities were changed or added. For more information on this application, make sure to read our blog post on the topic.

Graphs: Saturation Indicators for Heidelberg, Germany over time using OSHDB.

With our simple API constructed for intuitive use with a wide range of analysis queries in mind, users can work with a lossless dataset including deletions of past objects, erroneous, and partially incomplete data. Data can be viewed as snapshots at specific points in time or as a full history of the region, tag, or entity type to allow for endless use cases and to meet all user needs.

The full list of changes is available on github, with most improvements occurring in the “boring bits” that users will only notice through a smoother analysis process. We would like to highlight one change, however, that will prove useful to many researchers. New OSHDB filters allow practitioners to filter entities by the shape of the geometry. This feature targets a common discussion in the OSM community: how to deal with imperfectly-mapped objects.

When some beginners add objects to OSM, they may make minor mistakes in adding new buildings by drawing edges and not properly aligning rectangular buildings. These small errors can contribute to data quality considerations, a major application of OSHDB. With Version 1.0, users can now filter by rectangular or not-perfectly-rectangular objects and can thus identify distorted shaped in OSM. Filter methods like this addition allow researchers to comment on the quality of their OSM data for a region over time.

This filter method along with the many behind-the-scenes changes in this version and over the evolution of OSHDB contribute to the accessible database that allows researchers to easily interpret data in a way that was not possible in 2010, when OSHDB was only a vision in the minds of our team members. With the release of Version 1.0, we’re proud to offer a simple tool for the important task of data quality analysis. We look forward to carrying away many more small stones in the months and years to come.

Video: Evolution of OSM road network mapping in Heidelberg, Germany since 2007.

In the next few days, we will offer a range of content to celebrate and expand upon this release including demos, features, use cases, and insights into the development process. Keep up with us through our blogs and social media channels!

References:

  • Raifer, Martin; Troilo, Rafael; Kowatsch, Fabian; Auer, Michael; Loos, Lukas; Marx, Sabrina; Przybill, Katharina; Fendrich, Sascha; Mocnik, Franz-Benjamin; Zipf, Alexander (2019): OSHDB: a framework for spatio-temporal analysis of OpenStreetMap history data. Open Geospatial Data, Software and Standards.
  • Auer, Michael; Eckle, Melanie; Fendrich, Sascha; Kowatsch, Fabian; Marx, Sabrina; Raifer, Martin; Schott, Moritz; Troilo, Rafael; Zipf, Alexander (2018): Comprehensive OpenStreetMap History Data Analyses- for and with the OSM community. Talk at the State of the Map conference 2018, Milan.
  • Auer, Michael; Eckle, Melanie; Fendrich, Sascha; Kowatsch, Fabian; Loos, Lukas; Marx, Sabrina; Raifer, Martin; Schott, Moritz; Troilo, Rafael; Zipf, Alexander (2018): Ohsome – eine Plattform zur Analyse raumzeitlicher Entwicklungen von OpenStreetMap-Daten für intrinsische Qualitätsbewertungen. AGIT ‒ Journal für Angewandte Geoinformatik.
  • Auer, Michael; Eckle, Melanie; Fendrich, Sascha; Griesbaum, Luisa; Kowatsch, Fabian; Marx, Sabrina; Raifer, Martin; Schott, Moritz; Troilo, Rafael; Zipf, Alexander (2018): Towards Using the Potential of OpenStreetMap History for Disaster Activation Monitoring. Conference: Proceedings of the 15th ISCRAM Conference 2018, Rochester.
  • Raifer, Martin (2017): OSM history analysis using big data technology. Talk at the State of the Map conference 2017, Aizuwakamatsu.

Tags: become-ohsome, heigit, ohsome, oshdb, OSM

Posted in OSM, Services, Software

Comments are closed.

  • About

    GIScience News Blog
    News of Heidelberg University’s GIScience Research Group.
    There are 1,679 Posts and 0 Comments so far.

  • Meta

    • Log in
    • Entries RSS
    • Comments RSS
    • WordPress.org
  • Recent Posts

    • High Resolution Data Insights from OpenStreetMap Element Vectorisation
    • Data publication: Point clouds of snow-on and snow-off forest site
    • Job Offer: Deep Learning Engineer (m/f/d, up to 100%)
    • GIScience Postdoc/Senior Researcher Opportunity for OpenStreetMap Road Quality Analysis
    • Assessing road criticality and loss of healthcare accessibility during floods: the case of Cyclone Idai, Mozambique 2019
  • Tags

    3D 3DGEO Big Spatial Data CAP4Access Citizen Science Conference crisis mapping Crowdsourcing data quality deep learning disaster DisasterMapping GeoNet.MRN GIScience heigit HOT humanitarian humanitarian mapping Humanitarian OpenStreetMap team intrinsic quality analysis landuse laser scanning Lidar machine-learning Mapathon MapSwipe MissingMaps Missing Maps ohsome ohsome example Open data openrouteservice OpenStreetMap OSM OSM History Analytics Public Health Quality quality analysis remote sensing routing social media spatial analysis Teaching VGI Workshop
  • Archives

    • February 2023
    • January 2023
    • December 2022
    • November 2022
    • October 2022
    • September 2022
    • August 2022
    • July 2022
    • June 2022
    • May 2022
    • April 2022
    • March 2022
    • February 2022
    • January 2022
    • December 2021
    • November 2021
    • October 2021
    • September 2021
    • August 2021
    • July 2021
    • June 2021
    • May 2021
    • April 2021
    • March 2021
    • February 2021
    • January 2021
    • December 2020
    • November 2020
    • October 2020
    • September 2020
    • August 2020
    • July 2020
    • June 2020
    • May 2020
    • April 2020
    • March 2020
    • February 2020
    • January 2020
    • December 2019
    • November 2019
    • October 2019
    • September 2019
    • August 2019
    • July 2019
    • June 2019
    • May 2019
    • April 2019
    • March 2019
    • February 2019
    • January 2019
    • December 2018
    • November 2018
    • October 2018
    • September 2018
    • August 2018
    • July 2018
    • June 2018
    • May 2018
    • April 2018
    • March 2018
    • February 2018
    • January 2018
    • December 2017
    • November 2017
    • October 2017
    • September 2017
    • August 2017
    • July 2017
    • June 2017
    • May 2017
    • April 2017
    • March 2017
    • February 2017
    • January 2017
    • December 2016
    • November 2016
    • October 2016
    • September 2016
    • August 2016
    • July 2016
    • June 2016
    • May 2016
    • April 2016
    • March 2016
    • February 2016
    • January 2016
    • December 2015
    • November 2015
    • October 2015
    • September 2015
    • August 2015
    • July 2015
    • June 2015
    • May 2015
    • April 2015
    • March 2015
    • February 2015
    • January 2015
    • December 2014
    • November 2014
    • October 2014
    • September 2014
    • August 2014
    • July 2014
    • June 2014
    • May 2014
    • April 2014
    • March 2014
    • February 2014
    • January 2014
    • December 2013
    • November 2013
    • October 2013
    • September 2013
    • August 2013
    • July 2013
    • June 2013
    • May 2013
    • April 2013
  •  

    November 2022
    M T W T F S S
    « Oct   Dec »
     123456
    78910111213
    14151617181920
    21222324252627
    282930  
  • Recent Comments

    GIScience News Blog CC by-nc-sa Some Rights Reserved.

    Free WordPress Themes | Fresh WordPress Themes