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Crowdsourcing cycling data

- ”...data related to active transportation is often limited”
- both spatially and temporally

- GPS traces (in situ data): two categories
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1. Dedicated smartphone applications for the purpose of

collecting data for research and planning to e.g. enhance
cycling infrastructure with cost-effective interventions

o

Cities collecting data with CycleTracks

in Texas™ and CycleTracks Austin)
+« Monterey, CA
» Raleigh, NC
« Fort Collins, CO C%
« Minneapolis/St. Paul, MM Bi
» Seattle, WA KE DATA PRUJECT
s Salt Lake City, Utah
o Los Angeles, CA

. Ii;?:t; fn;irl'u DONATE YOU
« Lexington, BIKE DATA ¥

Interested in using CycleTracks in your city? Send an email te

CycleTracks rebranded and improved by other cit

CONTACT

« Lane County, OR (LaneTracks) the
o College Station, TX (AggieTracks)

« Charlottesville, VA (C-Vill Bike mAPP)
+« Hampton Roads, VA

« Atlanta, GA (Cycle Atlanta)
be uploadeq
to

« Montreal, Quebec (My ResoVelo) our service,

« Reno, NV (RenoTracks) You can also downlo d )

+ Philadelphia, PA (CyclePhilly) iPhone or Androg ad the Bikes yg Cars
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2. Mobile fitness applications for tracking own
workouts with possibility to share them with friends
or everyone and to keep an online workout diary.
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Dedicated apps vs. Fitness apps

Similarities: information about travel mode, speed, distance, time,
exact route...

Differences:

Dedicated apps: potentially more demographic data about the
cyclist and trip purpose, some control over data collection -
people are contributing to a common/collaborative project

VGI (volunteered crowdsourced data)

Fitness apps: amount of data/larger population, no control over
data collection — brand/target audience (utilitarian, recreational,
sport cyclists), no common project, private/public division

CGl (contributed crowdsourced data)

VGI / CGI - Important for assessing data’s fithess for use, identifying
biases or inaccuracies. - F. Harvey (2015) @



Whom does fitness app
data represent?

Planners need to understand
the representation of each
dataset used, and its limits to
a particular application.

’ Primarily the generalizability
of MapMyFitness data must be
thoughtfully considered before
use in research.

] ) [...] where bicyclists ride,
In-situ data may be [...] primarily for fitness
biased toward specific purposes. .
types of users. i
yy & Though the marketing focus l
This application captures a of the Strava app is oriented
quite small portion of the towards fitness, it is likely
population as Strava users. that its users log trips for

other purposes, as well.
@ NLS
FINNISH GEOSPATIAL
EEISEARCH INSTITUTE

e A N O ST e S ey L L T T e

R&\\‘K— /
[ e e e ey



Demography/ Other notes  Reference
generalizability
Strava Bias towards young and 22% commuting Griffin et al. 2015

Travis County, Texas middle-aged males rides
(< 25% female)

Sports Tracker Comparison to MapMyRide  Number of tracks Ferrari & Mamei
(global sample; cities data: Pearson correlation per city (> 200)is 2013
with enough data) 0.55 (std 0.37) very small

Endomondo - Absolute numbers Costés et al.
Global sample are not interesting 2014
without ref. data

MapMyFitness Majority or users female All workout types Hirsch et al. 2014
Winston-Salem, NC (57.1%) and between ages
of 18 and 44.

Females Females
85 and older 85 and older

75-84 75-84
65-74 65-74
55-64 55-64
45-54 45-54
35-44 35-44
25-34 25-34
Under 25 Under 25

\
™

-35 -25 -15 -5 5 15 25 35 -35 =25 -15 -5 s 15 25 35
Total Population: 1,095,584  PERCENT # of Strava users: 2,701 PERCENT

FIGURE 2. Travis County population estimate by age and sex at left (U.S. Census Bureau 2012), Strava fitness i

app bicyclists at right (Kitchel & Riordan 2014) FINNISH GEOSPATIAL
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What is Sports Tracker?

A free mobile GPS tracking app aimed at keeping
diary about sports activities (=workouts)

Online service sports-tracker.com
Social network

Started already in 2004 inside Nokia, now
iIndependent with millions of application downloads for
I0S, Android, WP, Nokia N9 and Symbian

Top 5 sports app in 25 countries
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Users

Characteristics of the data

2000 —

1500 —

1000 —

500 —

36 757 workouts, 2424 users

April 17t 2010—-November 215t 2012
36.6 x 10° GPS observations

82% contained valid time stamps

65% of users tracked 5 or less workouts
and 87% tracked 20 or less workouts
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9 The 90-9-1 Rule for participation inequality I social Media and Online
000 Communities
by JAKOB NIELSEN on October 3. 2006
Topics: gocial UX
150 5t 2012
0 | gummary: in most onling commun'mes, a0% of ysers are lurke who never oon’tr'\bute, Q%
of users contr'\bute a little, and 1% of users account for almost all the action
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Data cyclicity -

Yearly distribution

Frequency
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]
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Daily distribution

Sun  Mon Tue Wed Thu Fri Sat

Weekday

Helsinki

Monthly distribution

Frequency

1 2 3 4 5 6 7 8 9 10 11 12
Month

Diurnal distribution
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Sports Tracker vs.

Traffic surveys
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Helsinki Bicycle Count 2013

-
KEVYEN LIKENTEEN LASKENNAT KESAKUUSSA 2013
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KEVYEN LIKENTEEN LASKENNAT KESAKUUSSA 2013
| |

Isinki cycling counting, 24 h
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Density of workouts and diversity of users
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Method - ppDIV

Simpsons diversity index D and
PPKDE:

D(s) = 1= ) p(s)?
ppDIV(s) = ppKDE(s) * D(s)

Example: D =0.24

00000




Density of workouts
N high
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Does this tell something
about..

- Cycling - physical activity?
- Sports Tracker application?
- Cycling in Helsinki?

- Once the dataset is large enough, the
effect of biases gets eliminated ?

S T e .




Conclusions

Sports tracking apps provide a rich data source

Users are not as limited to sport and recreational cyclists as we
might expect (all cycling is physical activity)

We need to understand what the data represents before
drawing any conclusions based on it

Diversity of applications
Dedicated apps vs. fitness (sports tracking) apps
Sports tracking applications have their differences
"Participation inequality’ should not be neglected
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