Supporting mobility analysis with crowd-sourced data - Opportunities and challenges

Jean Damascene Mazimpaka
University of Augsburg, Germany
Problem and objective (1)

Mobility in real world

Individual trajectory
Problem and objective (2)

- Mobility data are used in many applications
 - Transportation: traffic management, routing
 - Urban planning: land use and infrastructure utilisation monitoring
 - Environment: air pollution and noise pollution control
 - Business: advertisement, choice of new business location
 - ...

- However, such applications require high level information:
 - characteristics of places visited
 - events that took place at the time of visit
 - characteristics of the geographic space where the movement took place
 - ...

- Surveys are expensive to deliver such information
- Manual annotation by the moving individuals is not feasible
- What about crowd-sourcing?
Opportunities (1)

- Increasing people’s participation to producing geo-referenced crowdsourced data
Opportunities (2)

• Produced crowdsourced data are rich in semantics
 ▪ social network data
 — main data + social structure
 — Social structure given a high importance
 — Example:
 check-ins (https://foursquare.com/)
 mainly text (http://www.twitter.com/)
 mainly text (http://www.facebook.com/)
 photos (http://www.flickr.com/)
 ▪ contribution-focused data
 — main data (+ social structure)
 — If available, social structure given low importance
 — Example:
 noise level data (http://www.noisetube.net/#&panel1-1)
 vehicle emission data (https://www.envirocar.org/)
 pleasantness of urban locations (http://urbangems.org/)
 geo-referenced pages (http://en.wikipedia.org/wiki/Main_Page)
 geographic features (http://www.openstreetmap.org)
Opportunities (3)

- Availability of APIs for accessing crowd-sourced data

API Methods

Read these first:
- Developer Guide
- Overview
- Encoding
- User Authentication
- Dates
- Tags
- URLs
- Buddyicons
- Flickr APIs Terms of Use

API Keys

Developers’ mailing list

The Flickr API is available for non-commercial use by outside developers. Commercial use is possible by prior arrangement.

activity
- flickr:activity.userComments
- flickr:activity.userPhotos

auth
- flickr:auth.checkToken
- flickr:auth.getRob
- flickr:auth.getFullToken
- flickr:auth.getToken

auth.oauth
- flickr:auth.oauth.checkToken
- flickr:auth.oauth.getAccessToken

- Root
- Friends
 - /users/username/friends
 - /users/username/friends/:friend
- Tracks
 - /tracks
 - /tracks/:trackid
 - /users/username/tracks
 - /users/username/tracks/:trackid
- Phenomenons
 - /phenomenons
 - /phenomenons/:phenomenon
- Sensors
 - /sensors
 - /sensors/:sensor
Challenges (1)

- Data sparsity
- Data representativeness
Challenges (2)

• Limitations associated with the available APIs, e.g.:
 – In Foursquare, view friends of an individual but cannot view the check-ins of a specific user
 – In Flickr, limit at 3600 queries per hour and per key

• Motivation
 – contribution-focused data may require:
 o acquisition of specific devices (e.g. sensors)
 o more efforts
 – for social network data
 • Establishing and maintaining a network is a one motivation

 Need for (further) motivation
Challenges (3)

• Incompleteness due to limited quality control

• Location uncertainty due to:
 – accuracy of the device used for location recording
 – processing done at the crowdsourcing platform that can filter or modify geographic information
 – the credibility of the user generating the data who can change geographic coordinates intentionally
 – the difference between user and content locations e.g. a Flickr photo showing Mount Everest with coordinates on another mountain
Addressing the challenges (1)

• **Collaborative filtering (CF)** for addressing data sparsity
 – commonly used in recommendation systems
 – idea behind: similar users make ratings in a similar manner for similar items.

 → similarity is determined between users and between items, a prediction can be made to the rating of a user about future items (Nakamura and Abe, 1998)

• **Data pre-processing** for addressing the uncertainty
 – *Filtering* outlying data items and those of obviously wrong locations or values
 – *density of contributions* as one indicator of the level of certainty
Addressing the challenges (2)

- Integrating data from multiple sources for addressing data representativeness, incompleteness, and sparsity
 - But addressing also the problems due to the integration
 e.g. Conflicting information solved by a voting strategy (Li et al. 2013)
 - Evaluate different integration approaches to choose most effective and best performing
Addressing the challenges (3)

• Implementing incentive mechanisms for addressing the motivation challenge:

 ▪ Choose suitable incentive mechanisms from available proposals (examples in Quinn and Bederson, 2011)

 ▪ Further examples:
 - Crowd-sourcing platforms imparting reputation to contributors indirectly
 - Providing interesting applications based on contributed data with additional features for contributors, and advertising these features
Conclusion

• Crowd-sourced data have a high potential to support mobility analysis.

• However, several challenges need to be addressed.

• Our future work will concentrate on challenges related to integrating data from multiple sources:

 – Applying ontological modelling approaches for simplifying the integration

 – Integrating social network activities of a user from different social platforms to fill the gap caused by using only one source
Thank you for your attention
References (1)

References (2)

