ENRICHING GEO-SOCIAL MEDIA CONTENT THROUGH GEOGRAPHIC CONTEXTUALIZATION
EARTH OBSERVATION WITH UNCALIBRATED IN-SITU SENSORS

Frank O. Ostermann
RICH-VGI Workshop, AGILE 09.06.2015
ENRICHING GEO-SOCIAL MEDIA CONTENT THROUGH GEOGRAPHIC CONTEXTUALIZATION
EARTH OBSERVATION WITH UNCALIBRATED IN-SITU SENSORS

- Introduction: Using geo-social media APIs as sensors
- Opportunities and challenges: Practical examples
- Outlook on future research directions
NEW SOURCES OF GEO-INFORMATION
GEO-SOCIAL MEDIA AS SENSORS

<table>
<thead>
<tr>
<th>Participation</th>
<th>Geography</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Explicit</td>
<td>Explicit</td>
<td>Volunteered Geographic Information (VGI)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Open Street Map</td>
</tr>
<tr>
<td>Implicit</td>
<td>Implicit</td>
<td>Volunteered Geographic Content (VGC)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wikipedia articles on non-geographic topics containing place names, Foursquare</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Contributed / Ambient Geographic Information (CGI/AGI)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Public Tweets referring to the properties of an identifiable place.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>User-Generated Geographic Content (UGGC)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Public Flickr images containing a place name or being georeferenced</td>
</tr>
</tbody>
</table>

Adopted from [1]
GEO-SOCIAL MEDIA SENSORS - WHAT’S DIFFERENT?
GEO-SOCIAL MEDIA AS SENSORS

• Often In-situ
• Rich, pre-processed information
• Uneven distribution
• Heterogeneous level of quality
• Varying but high update frequency (stream)
• Redundancy of content and channels (sharing)
• Heterogeneous structure
• Unknown source/lineage
• Unclear / changing licencing, property rights, liability (e.g. OpenStreetMap)

• Unknown/Immeasurable precision, error, completeness
• Uncertainty about the uncertainty!

• How to calibrate? (Should we?)
WHO IS THE CROWD?
GEO-SOCIAL MEDIA AS SENSORS
WHAT DOES THE CROWD WANT?
GEO-SOCIAL MEDIA AS SENSORS
QUALITY ASSESSMENT AND CALIBRATION OF GEO-SOCIAL MEDIA

GEO-SOCIAL MEDIA AS SENSORS

Adopted from [2, 3]
CHALLENGES AND OPPORTUNITIES OF GEO-SOCIAL MEDIA
EARTH OBSERVATION WITH UNCALIBRATED IN-SITU SENSORS

- Introduction: Using geo-social media APIs as sensors
- Opportunities and challenges: Practical examples
- Outlook on future research directions
GEO-SOCIAL MEDIA AND CRISIS MANAGEMENT

EXAMPLES

<table>
<thead>
<tr>
<th>Social media offers…</th>
<th>Crisis management needs…</th>
</tr>
</thead>
<tbody>
<tr>
<td>rich up-to-date information</td>
<td>up-to-date information</td>
</tr>
<tr>
<td>new paths of communication</td>
<td>redundant paths of communication</td>
</tr>
<tr>
<td>noise, uncertain lineage and accuracy</td>
<td>high-quality and reliable information</td>
</tr>
</tbody>
</table>

Crowd-sourced data curation faces limits of

- Sustainability
- Scalability
FOREST FIRES IN FRANCE 2011

EXAMPLES

Source: [3]
FOREST FIRES IN FRANCE BY GEOCONAVI

EXAMPLES

Source: [3]
GEOCONAVI FIGHTING FOREST FIRES

1. **Retrieval**
 - Scheduled Java code accessing APIs

2. **Storage**
 - Scheduled Java code writing to DBMS

European Media Monitor

2.1 **Topicality**
 - Scheduled PLSQL job

2.2 **Geo-Coding**
 - a) Scheduled PLSQL job
 - b) Scheduled Java code

2.3 **Geographic context**
 - Scheduled PLSQL job

2.4 **Quality Assessment**
 - Scheduled PLSQL job

Dissemination

3.1 **Spatio-temporal clustering**
 - Scheduled Python script calling SatScan job

3.2 **Quality Re-Assessment**
 - Scheduled PLSQL job

Oracle DBMS
GEOGRAPHIC CONTEXTUALIZATION

Choice of dataset
- Talk to the domain experts
- Talk to the data experts
- Make a choice

For this case study
- MODIS hotspots
- Population density (vulnerability, reliability)
- Forest cover (risk, reliability)
FRENCH FOREST FIRE SOCIAL MEDIA
PAST RESEARCH

(1) Containing French keywords:
659,676 Tweets and
39,016 Flickr images

(2) Machine-learned
relevance filter:
25,684 items left

(3) Geocoded and
context enriched:
5,770 items left

(4) Clustered in
space and time:
129 clusters with
2,682 items

(5) Second relevance filter:
11 clusters left
with 469 items
SEMANTICS OF PLACES ACROSS GEO-SOCIAL MEDIA
OVERVIEW

- Theory-guided research and local case study:
 - How to people see and understand the places they frequent?
 - What is different across media sources?
- More than one (volunteered) data source
- Identification of places and their semantics
- Comparison of places between data sources
- Comparison of places with geographic features and authoritative data sources
SEMANTICS OF PLACES
IMPLEMENTATION

- Shatford-Panofsky and Agnew
- Greater London Area
- From Twitter to Flickr
- Data Mining (Spatio-temporal clustering) -> Semantic Analysis (Cosine Similarity, …)
- Geo-demographic data
SEMANTICS OF PLACES
IMPLEMENTATION: COSINE SIMILARITY NEAREST NEIGHBORS
SEMANTICS OF PLACES
IMPLEMENTATION: CORRELATION DISTANCE & SIMILARITY
SEMANTICS OF PLACES
IMPLEMENTATION: CORRELATION DISTANCE & SIMILARITY

Distane threshold: 500 meters
SEMANTICS OF PLACES
IMPLEMENTATION: CORRELATION DISTANCE & SIMILARITY

Distance threshold: 1000 meters
CHALLENGES AND OPPORTUNITIES OF GEO-SOCIAL MEDIA
EARTH OBSERVATION WITH UNCALIBRATED IN-SITU SENSORS

- Introduction: Using geo-social media APIs as sensors
- Opportunities and challenges: Practical examples
- Outlook on future research directions
UNSOLVED PROBLEMS FROM FRENCH CASE STUDY
RESEARCH QUESTIONS

Relevant datasets for contextualization

- Choice
- Integration

Settings for data mining and machine learning

- Method
- Parameters

Geospatial Semantic Web
Multi-Sensory Integration
Crowdsourced Supervision
INTEGRATING GEO-SOCIAL MEDIA
WHAT’S HAPPENING NOW
INTEGRATING GEO-SOCIAL MEDIA
FUTURE IDEAS

Event

Initial Stimulus (News, Emergency Call)

Stimulus 1

Sensor System A

Stimulus n

Sensor System X

Broker

Multi-Sensor Integration

Source

Context

Content

Location

Perception A

Perception X

Action A

Action X

Short-Term Storage

Long-Term Storage
Multi-Sensory Integration

- Combines the information from different sensory systems
- Results in coherent representation of the environment
- Is prerequisite for adaptive behavior and response to the environment
- Decreases sensory uncertainty and reaction times

Characteristics

- Mutual feedback between sensory systems
- Spatial proximity, temporal proximity, and inverse effectiveness
Sensor data or information fusion

Focus on

- Low-level abstracted sensor data
- Data fusion from several but similar sensors
- Different but related sensors in close spatial proximity (e.g. robotics)

Less activity on

- Integration of heterogeneous sensors covering irregular areas (hard/soft data integration from disparate sensors)
Two major principles from neuroscience and cognitive science align with core GI-principles: what is near in space and time is related

Inverse effectiveness hints at why outliers might be important

Engineering provides methods and algorithms
HYBRID GEO-INFORMATION PROCESSING
RESEARCH QUESTIONS

Developing hybrid quality assurance mechanisms for near real-time geo-information streams

• How can crowd-sourced supervised machine-learning improve information quality?
• Which are feasible approaches and implementations of crowd-sourced and cloud-based real-time processing and information dissemination?
• How can we crowdsource the analysis of model outputs and data mining processes?

Key Technologies

• Apache Spark / Storm
• Active Learners
• Cloud Computing
HYBRID GEO-INFORMATION PROCESSING WORKFLOW
MORE INFORMATION

http://www.slideshare.net/jrc_vgi_ff/geographic-context-analysis-of-volunteered-information

https://sites.google.com/site/geoconavi/

http://geocommons.com/maps/183605
CHALLENGES AND OPPORTUNITIES OF GEO-SOCIAL MEDIA
EARTH OBSERVATION WITH UNCALIBRATED IN-SITU SENSORS

Thank you!

f.o.ostermann@utwente.nl
@f_ostermann
nl.linkedin.com/in/foost