
1 Introduction 

With the advancement of technology and the widespread use 

of devices connected to global positioning system, more and 

more spatial data is being collected and stored in databases. 

Although offering valuable information and knowledge, there 

are several challenges in processing spatial big data due to its 

large size and unique spatial properties such as spatial 

dependency. In previous research, Kohonen’s Self-Organizing 

Map [1] has been proven effective to explore, analyse, and 

understand latent structure of multi-dimensional data.  

In GIScience, the rise in the availability of spatial data 

paved ways for increased research in different techniques of 

spatial data mining. One fundamental property that has been 

central in spatial data mining research is spatial dependence 

[2], which postulates that entities near in distance share more 

similarities than those that are far apart [3]. Although this 

dependency can be viewed as confounding, they can be 

valuable sources of underlying geographical phenomena in 

spatial data [4]. 

 

 

2 Background 

Several studies have demonstrated strengths in Self-

Organizing Map algorithm (SOM) over other data mining 

methods [5, 6]. Originated from the Computer Science field, 

SOM is an unsupervised neural network algorithm for data 

clustering and analysing. It is a technique used for reducing 

multi-dimensional data into a lower dimensional map, by 

mapping input data to neurons in a topologically ordered 

manner. For this reason, SOM is easy to visualize multi-

dimensional complex data, and thus, have been of great 

interest in GIScience [7]. So far, there have been several 

attempts to integrate spatial dependence in SOM algorithm. 

For example a Geographical Hypermap and the Spatial 

Kangas Map, algorithms which are inspired by [8, 9] and 

GeoSOM [7] respectively, integrate spatial dependence by 

giving more weight on geospatial variable of the input data. 

Hence, although research efforts have been made in recent 

years in the field of spatial data mining and SOM [10], there is 

no common approach to tackle the growing amount of spatial 

data. Especially, the amount of environmental sensor data 

being collected on air pollution is raising very quickly. 

Therefore, the goal of the study is to develop an integrated 

approach that could provide us with an insight to tackling the 

problems of large complex heterogeneous data we face today. 

In the study, we aim to answer the following question that 

remain open in the study of GIScience: 

How can we analyse and understand spatial characteristics of 

given sensor observations using SOMs? 

In order to answer this research question, we apply a Spatial 

SOM and test its performance in terms of both speed and 

quality in clustering and analysing spatial big data. The study 

shows that SOM is a promising approach to explore and 

analyse latent pattern within large air pollution dataset in a 

distinct use case.  

 

2.1 Implementation of Spatial SOM 

Figure 1 depicts the analysis framework used to analyse our 

air pollution dataset. The SOM can be divided into roughly 

three parts: 1. initializations, 2. training and collecting new 

weight values, and 3. updating the weight vectors of neuron. 

The initialization involves initialization of weight vectors of 

output neurons and initialization of accumulators. In order to 

assist faster training time, K number of samples from the 

input are randomly selected and their weight vectors are used 

to initialize the neurons. To ensure the algorithm accounts for 

the latent structures of spatial data, the Spatial SOM takes a 

similar approach as it is done in Kangas Map [8] and Geo-

SOM [7] with the introduction of a geographical tolerance 

parameter to limit the Best Matching Unit (BMU) search.  
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Figure 1: Spatial SOM analysis framework. 

 
 

 

3 Case Study: Air Pollution Data 

In this case study, sensor data of Particulate Matter (PM) are 

used to test the performance of a Spatial SOM on clustering 

high-dimensional data with spatial dependence. PM is a 

mixture of solid and liquid that constitutes air pollution. It is 

composed of acids (such as nitrates and sulphates), organic 

chemicals, metals, soil, and other dust particles and allergens 

from the atmosphere. PM of size smaller than 2.5 micrometres 

in diameter or smaller are referred to as fine particle pollution 

or PM2.5. And our focus is PM2.5 data set for this study. 

A lot of research on PM2.5 in both United States and abroad 

demonstrate that there is a strong association between PM2.5 

and human health, especially mortality [11]. However, there is 

no agreement among research on the magnitude of the effect 

of PM2.5 on human health [12]. This alludes that there are 

specific aspects of PM2.5 that influences varying results. 

Among many aspects, it has been suggested in some studies 

[13, 14] that differing geographical location of sites where 

PM2.5 were measured may be attributable to varying results 

of the PM2.5 studies. Recent research [13, 15, 16] show that 

the varying results of the PM2.5 studies may be due to spatial 

factor causing chemical composition of PM2.5 to vary, 

consequently, producing mixed results for different study 

sites. For this reason, PM2.5 chemical composition data set 

make an interesting case to study and assess for any hidden 

spatial relationships in the data set. 

 

 

3.1 Data Preprocessing 

As a first step of the analysis, PM2.5 data set is obtained from 

the United States Environmental Protection Agency Air Data 

website (http://www.epa.gov/airdata) and is pre-processed. 

They are diurnal samples from the period January 2003 until 

December 2008 selected based on the basis where the data is 

most complete. Samples are collected in the intervals varying 

from 3-6 days. Table 1 provides further meta-data of the data 

set used in the study. 

 

Table 1: Metadata of air pollution data used in the study. 

Dataset Continental United States 

Bounding Box 

(WGS84) 

-125.0011, 24.9493, -66.9326, 

49.5904 

Time Span 1 January 2003 - 31 December 

2008 

Covered Area 8,080,464.3 km 

Number of 

Objects  

221,000 

To better understand the retrieved data set, geo-spatial 

assessment is done for the year 2005, to find out if there is any 

visible spatial correlation in the data set. Figure 2 illustrates 

the average PM2.5 concentration levels across the continental 

United States in 2005. The concentration levels show that 

PM2.5 level is especially high (highlighted purple) in the 

Midwest region near the Great Lakes and in Fresno region, 

California in the West.  

To be able to get a comprehensive analysis of such high-

dimensional data set with spatial dependence, a multivariate 

SOM approach is necessary. A better grasp of spatial 

relationships will enhance our understanding of the interaction 

between pollutants as well as further human health effects 

related to exposure to these complex mixtures. 

 

Figure 2: Site locations of the PM2.5 sensors 

 
Source: (base map: Stamen Design CC BY 3.0, Data by 

OpenStreetMap CC BY SA). 

 

3.2 SOM Result 

Figure 3 is a resulting U-matrix of PM2.5 data trained with 

Spatial SOM. In the U-matrix, several clusters can be 

detected. The difference in distances are represented by 

different shades of grey. Neurons shaded in black to dark grey 

(range = 0.0-0.5) indicate neurons that are close to each other 

in the input space. Neurons shaded in white to light grey 

(range = 0.5 - 1.0) show neurons that are far from each other 

in the input space. Darker regions in the U-Matrix are units 

with low Uheight value and therefore they are clusters, and 

lighter regions are units with high Uheight value and thus can be 

interpreted as cluster separators. In general, there are many 

large loose clusters and some small clusters. This suggests 

that there are many values that are similar in the data set and 

relatively fewer values that are more extreme than the others. 

From the U-Matrix, four clusters are identified for a further 

analysis. The analysis focused on these four clusters because 

they had the lowest Uheight values (< 0.2). These clusters are 

highlighted in shades of red, blue, yellow, and green in Figure 

3. 

It can be concluded that the spatial SOM clusters varying 

PM2.5 chemical species levels over geographical space fairly 

well. In general, regions with higher levels of total PM2.5 

chemical concentration are clustered together (C3 and C4), 

and lower levels are clustered together as well (C1 and C2). 

C2 Midwest cluster, more specifically Great Lakes region, is 

one of the interesting cluster that can be observed in the 
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Spatial SOM output. The sites included in this group are 

primarily urban. 

 

Figure 3: U-matrix representation of the SOM analysis on 

PM2.5 data. 

 
 

Figure 4: Component planes for selected variables with 

spatial correlating clusters highlighted in blue. 

 
 

Component planes (Figure 4) show that there is a relatively 

stronger tendency that metal elements, such as iron and lead, 

are clustered close to the right side, which coincides with the 

C2 cluster’s location in the U-Matrix (Figure 3). Thus, it can 

be implied that these metal variables influence the C2 cluster 

the most. This phenomenon can be attributed to the fact the 

Great Lakes region is known as the agglomerate of heavy 

industry such as iron and automobile industries historically 

and today. The East cluster (C1) can also be extracted from 

vanadium and nickel planes. Vanadium and nickel are known 

chemical pollution that come from ship engine exhaust [17]. 

The sites in C1 are primarily close to the eastern coasts or 

major inland body of water, they are New York, North 

Carolina, Pennsylvania, North Carolina, and Michigan. Thus, 

the presence of large volume of ship traffics near the coasts 

and inland waters may explain the patterns of higher 

vanadium and nickel concentration in these areas. Although it 

is less clear in comparison to other component planes, 

sulphate and nitrate component planes also have tendency to 

cluster on the far right hand side of the plane.  

 

4 Conclusion 

In this study, we set out the objective to contribute and 

provide insights in overcoming the challenges with spatial big 

data. Specifically, we aimed to study ways in which we can 

apply and assess spatial SOM algorithms for handling large 

datasets, and how we can uncover latent structures in big data 

with spatial dependence. 

The detailed analysis of the Spatial SOM result 

demonstrates that Spatial SOM is an effective tool in detecting 

cluster with spatial dependence in the data. It is able to detect 

chemical species variation across continental United States. In 

conclusion, the case study validates the effectiveness of 

Spatial SOM as an analysis tool for discovering not only 

hidden relationships in general attribute features but also for 

spatial features as well. 

Regarding our research question, we demonstrated that 

Spatial SOMs can detect underlying latent spatial and 

chemical structures and covariates from pollution data 

collected from sensors using a case study with air pollution 

data. In other SOM variants, usually spatial attributes are 

treated as any other attributes given equal weights. However, 

in a Spatial SOM, more weight is given to the spatial attribute, 

so that input vectors or observations are largely aggregated 

based on their geographical proximity first, and then fine 

tuned by other chemical features. The Spatial SOM was able 

to reduce high-dimensional data into two-dimensional visual 

representation as shown in the U-matrix (Figure 3).  
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