Feed on
Posts
Comments

Tag Archive 'machine-learning'

We invite to the upcoming online seminar at the Urban Analytics Lab seminar series at the National University of Singapore (NUS):
‘Deep learning from Volunteered Geographical Information: a case study of humanitarian mapping with OpenStreetMap’
on 29 April (9am German time, 3pm Singapore time)
By Hao Li, GIScience Research Group, Heidelberg University @GIScienceHD
As an emerging topic, OpenStreetMap [...]

Read Full Post »

The 3DGeo Research Group will present some of their latest research at EGU General Assembly 2022.
We are looking forward to meet you at the following talks:

Virtual Laser Scanning using HELIOS++ - Applications in Machine Learning and Forestry: The presentation provides an introduction to VLS, possible use cases, pitfalls and best practices for successful application of [...]

Read Full Post »

Job advertisement HeiGIT gGmbH
Do you want to use your machine learning expertise for the benefit of society and the environment? Do you want to improve the availability and quality of geospatial data and further develop geoinformatics methods used for open, non-profit applications in the field of sustainability, mobility and humanitarian aid? That’s our mission too!
HeiGIT [...]

Read Full Post »

You are interested in contributing to research and development to support decision making in the field of sustainability, mobility and humanitarian aid? You want to achieve a better society and environment by improving open geoinformation and geoinformation technology? Help us to accomplish this through open geoinformation, open methods, open software and close collaboration with our [...]

Read Full Post »

Du willst Deine Machine Learning Kompetenz zum Wohle der Gesellschaft und Umwelt einsetzen? Du willst die Verfügbarkeit und Qualität von Geodaten verbessern und geoinformatische Methoden weiterentwickeln, die für offene, gemeinnützige Anwendungen im Bereich Nachhaltigkeit, Mobilität und humanitäre Hilfe eingesetzt werden? Das ist auch unsere Mission!
Die HeiGIT gGmbH ist ein forschungsorientiertes, gemeinnütziges Start-up mit den Zielen [...]

Read Full Post »

Stellenausschreibung Universität Heidelberg – GIScience
Wissenschaftliche Mitarbeiter:in Geoinformatik - Projekt GeCO

GeCO: Generating high-resolution CO2 maps by Machine Learning-based geodata fusion
Du hast Interesse an Klimawandel, Treibhausgasemissionen und innovativen Geoinformatik-Methoden?
Im Rahmen des vom Heidelberg Center for the Environment (HCE) durch die Exzellenzstrategie geförderten Kooperationsprojektes GeCO suchen wir baldmöglichst nach einer wissenschaftlichen Mitarbeiter:in (m/f/d). Die Abteilung Geoinformatik entwickelt [...]

Read Full Post »

Recently a new project has been starting in the context of Climate Change Action research:
GeCO: Generating high-resolution CO2 maps by Machine Learning-based geodata fusion and atmospheric transport modelling
The spatiotemporal distribution of greenhouse gases and their sources on Earth has so far been considered mainly at relatively coarse resolutions. There is a lack of sound [...]

Read Full Post »

The AGILE 2021 conference is taking place this week. It is the the 24rd AGILE conference on GIScience. AGILE is the Association of Geographic Information Laboratories in Europe and the 2021 conference is for the first time held as a virtual conference. As in earlier years GIScience Heidelberg and HeiGIT are contributing to the conference with several [...]

Read Full Post »

(English version below)
Die Folgen des Klimawandels sind besonders stark in den höheren Breiten unseres Planeten zu spüren. Die Arktis erwärmt sich derzeit überdurchschnittlich schnell. Dies führt zum Auftauen von Permafrost (dauerhaft gefrorenen Böden) mit ernsthaften Konsequenzen für das arktische Ökosystem. Etwa ein Viertel der Landfläche in der Nördlichen Hemisphäre ist durch Permafrost gekennzeichnet. Darin sind [...]

Read Full Post »

A couple of viruses are of global interest with respect to human health and well-being. These pathogens include the novel coronavirus SARS-CoV-2, Dengue, Chikungunya, Yellow fever, Zika and Ebola. These viruses show interesting spatio-temporal dynamics. Improved understanding of the driving and moderating factors will help to cope with these pathogens.
The recently funded new project geoEpi [...]

Read Full Post »

Older Posts »