• Home
  • About

GIScience News Blog

News of Heidelberg University’s GIScience Research Group.

Feed on
Posts
Comments
« Tales from a Special Spring at Geography Heidelberg
Student field trip to Northern England »

Analysing OSM Completeness of health facilities in Sub-Sahara Africa in ohsomeHeX

Apr 17th, 2020 by so8

A new map in ohsomeHeX provides an overview of areas in Sub-Sahara Africa where information on health facilities is still missing in OpenStreetMap (OSM).
The completeness of OSM is measured by comparing to a reference dataset on public health facilities in Sub-Sahara Africa, which was developed by Maina et al. 2019.
Especially in these days, where the global pandemic outbreak of COVID-19 strikes hard the most vulnerable groups in every country of the world, it is of utmost importance for health planners to get access to health facility data in order to estimate the needs to protect the population.
The ohsomeHeX tool developed by HeiGIT gGmbH provides users insights into the temporal development of health related infrastructure and other OSM data topics.


ohsomeHeX with Completeness layer on Health Facilities in Sub-Sahara Africa
ohsomeHeX with Completeness layer on Health Facilities in Sub-Sahara Africa

Background

Better decisions through Open Data. In many countries OpenStreetMap (OSM) data has been collected by volunteers to cover a variety of topics. The openness and accessibility of this data makes it a valuable source of information which can be used to provide specialized spatial services to support societal activities and planning decisions. An improved access to health facility data for planners, international organizations and the public can help taking the right decisions faster and thus to save lives.

Humanitarian and medical operations need data. Many international, national and local governmental and non-governmental organizations need information for planning and implementation of their health programs to improve the provision of health care services to the population, especially in developing regions with a growing population, that is exposed to environmental changes, disaster risks, conflicts or disease outbreaks, like COVID-19. OSM as a free and border-less mapping infrastructure and database has a high potential to be of use as a common platform to collect and provide these data for the benefit of all.

Heterogeneous coverage. In the past 15 years, since the beginning of OSM, the data that volunteers produced has not been collected evenly over the globe. As of today, most data is concentrated in western countries, especially Europe. Thus, large areas are still underrepresented in OSM and a first step is to reveal: Where is the data missing? Where to start mapping and concentrate efforts?

Partnership with healthsites.io. The Global Healthsites Mapping Project (healthsites.io) is a project that aims to facilitate the collection and use of global health facility data and uses OSM as spatial data infrastructure. healthsites.io and HeiGIT are collaborating to better understand the quality and support the sharing and use of OSM health facility data.(-> Healthsites and HeiGIT establish partnership)

The Map

There is a well known need for easy to understand quality measure maps and figures to convince decision makers to help improving OSM by opening their health related data and to motivate volunteers to start mapping in the areas where help is most needed. This map is a first attempt to visualize the areas where OSM is missing data in order to drive attention to the right places and start improving it. Data contributions to improve the situation can be made directly via the website of healthsites.io.

Data & Methods

The map was created based on the comparison of two datasets by calculating the difference between OSM and a reference dataset. The reference dataset is a specific source of public health facilities in Sub-Sahara Africa published by Maina et al. 2019 and available on springernature.figshare and WHO. On the one side we used OSM data -whose completeness was to be evaluated- and filtered them by specific healthcare related tags. On the other side we used the complete unfiltered public health facility reference dataset. Both datasets are not homogeneous and were taken as they are!

The list of OSM tags that have been used in the comparison is based on the list that the healthsites.io project defined on their OSM-WIKI page as of March 2020:

  • “amenity=doctors”
  • “amenity=pharmacy”
  • “amenity=dentist”
  • “amenity=hospital”
  • “amenity=clinic”
  • “healthcare=doctor”
  • “healthcare=pharmacy”
  • “healthcare=hospital”
  • “healthcare=clinic”
  • “healthcare=dentist”
  • “healthcare=physiotherapist”
  • “healthcare=alternative”
  • “healthcare=laboratory”
  • “healthcare=optometrist”
  • “healthcare=rehabilitation”
  • “healthcare=blooddonation“
  • “healthcare=birthingcenter“

In order to get an insight at the development of the completeness over time we compared different OSM snapshots in a monthly resolution starting from Nov. 2007 to Jan. 2020. To retrieve this type of historic OSM data snapshots we used the technology of HeiGIT’s OpenStreetMap History Database OSHDB (Raifer et al 2019). If you are interested in learning more about the ohsome platform built on top of the OSHDB , you might want to have a look into the ohsome-examples blogpost-series introducing the usage of the ohsome API http://api.ohsome.org/ with several applications and code examples.

Both datasets have been further post-processed in a PostgreSQL/PostGIS database to count the health facilities into several resolutions of a hexagonal grids (ISEA3H) and then subtract the cell values of OSM and the reference dataset for each cell in each resolution and each time-snapshot.

Results & Future plans

The results can be interactively explored in ohsomeHeX. The map shows the potential completeness of OSM health facilities in Sub-Sahara Africa. Red-ish color indicate missing facilities to be mapped, blue-ish colors represent areas with more health facilities than in the reference dataset.

The results vary between countries but also between rural areas and cities. The used method result in values that do not precisely represent the real situation, but can be understood as a rough “big picture” to identify potential areas to be completed in OSM.

Further refinements of this analysis in the sense of comparing specific subsets of both datasets, e.g. hospitals only or clinics, or pharmacies etc. seem to have the potential to give a more precise picture of the OSM completeness and are planned for the future.

Many activities by humanitarian organizations and governments related to COVID-19 are currently focused on improving healthsites data. Therefore it is important to do research on data completeness to give hints where to concentrate efforts and to monitor the progress of the activities. For Africa there is still a long way to go to be able to provide the necessary health services and capacities. Everybody can help to improve the situation, now!

To help improving the map with respect to health facilities please consider using the platform of healthsites.io or directly contribute to OSM !

Related Links

  • healthsites.io
  • OSM-WIKI: The Global Healthsites Mapping Project
  • Reference Data: springernature.figshare
  • Article on reference data: Maina, J., Ouma, P.O., Macharia, P.M. et al. A spatial database of health facilities managed by the public health sector in sub Saharan Africa. Sci Data 6, 134 (2019). https://doi.org/10.1038/s41597-019-0142-2
  • Blog: OSHDB: a framework for spatio-temporal analysis of OpenStreetMap history data
  • Blog: Exploring OSM history: the example of health related amenities

Raifer, M, Troilo, R, Kowatsch, F, Auer, M, Loos, L, Marx, S, Przybill, K, Fendrich, S, Mocnik, FB & Zipf, A (2019): OSHDB: a framework for spatio-temporal analysis of OpenStreetMap history data. Open Geospatial Data, Software and Standards, https://doi.org/10.1186/s40965-019-0061-3.

Earlier work on using the platform, e.g.:

Auer, M.; Eckle, M.; Fendrich, S.; Griesbaum, L.; Kowatsch, F.; Marx, S.; Raifer, M.; Schott, M.; Troilo, R.; Zipf, A. (2018): Towards Using the Potential of OpenStreetMap History for Disaster Activation Monitoring. ISCRAM 2018. Rochester. NY. US.

Tags: COVID-19, Health, ohsome, ohsomeHeX, OSM, Public Health

Posted in OSM, Research, Services

Comments are closed.

  • About

    GIScience News Blog
    News of Heidelberg University’s GIScience Research Group.
    There are 1,459 Posts and 0 Comments so far.

  • Meta

    • Log in
    • Entries RSS
    • Comments RSS
    • WordPress.org
  • Recent Posts

    • Keynote at McGILL GIS DAY: Analysing and Improving OpenStreetMap for Humanitarian Aid with Data Mining and GeoAI
    • Update on “Accessibility of COVID-19 vaccination centers in Germany”
    • Globales Gletschermonitoring - Chance und Herausforderung — HGG Vortrag am 19.Januar 2021 Dr. Isabelle Gärtner-Roer, World Glacier Monitoring Service, Universität Zürich
    • Accessibility to pharmacies in Germany with 15km Covid-19 restriction
    • 4D change analysis for improving our understanding of dynamic landscapes
  • Tags

    3D 3DGEO Big Spatial Data CAP4Access Citizen Science Colloquium crisis mapping Crowdsourcing data quality disaster DisasterMapping GeoNet.MRN GIScience heigit HOT humanitarian Humanitarian OpenStreetMap team intrinsic quality analysis landuse laser scanning Lidar Mapathon MapSwipe MissingMaps Missing Maps ohsome ohsome example Open data openrouteservice OpenStreetMap OSM OSM History Analytics OSMlanduse Quality quality analysis remote sensing routing social media spatial analysis Teaching terrestrial laser scanning Twitter VGI Wheelchair Navigation Workshop
  • Archives

    • January 2021
    • December 2020
    • November 2020
    • October 2020
    • September 2020
    • August 2020
    • July 2020
    • June 2020
    • May 2020
    • April 2020
    • March 2020
    • February 2020
    • January 2020
    • December 2019
    • November 2019
    • October 2019
    • September 2019
    • August 2019
    • July 2019
    • June 2019
    • May 2019
    • April 2019
    • March 2019
    • February 2019
    • January 2019
    • December 2018
    • November 2018
    • October 2018
    • September 2018
    • August 2018
    • July 2018
    • June 2018
    • May 2018
    • April 2018
    • March 2018
    • February 2018
    • January 2018
    • December 2017
    • November 2017
    • October 2017
    • September 2017
    • August 2017
    • July 2017
    • June 2017
    • May 2017
    • April 2017
    • March 2017
    • February 2017
    • January 2017
    • December 2016
    • November 2016
    • October 2016
    • September 2016
    • August 2016
    • July 2016
    • June 2016
    • May 2016
    • April 2016
    • March 2016
    • February 2016
    • January 2016
    • December 2015
    • November 2015
    • October 2015
    • September 2015
    • August 2015
    • July 2015
    • June 2015
    • May 2015
    • April 2015
    • March 2015
    • February 2015
    • January 2015
    • December 2014
    • November 2014
    • October 2014
    • September 2014
    • August 2014
    • July 2014
    • June 2014
    • May 2014
    • April 2014
    • March 2014
    • February 2014
    • January 2014
    • December 2013
    • November 2013
    • October 2013
    • September 2013
    • August 2013
    • July 2013
    • June 2013
    • May 2013
    • April 2013
  •  

    April 2020
    M T W T F S S
    « Mar   May »
     12345
    6789101112
    13141516171819
    20212223242526
    27282930  
  • Recent Comments

    GIScience News Blog CC by-nc-sa Some Rights Reserved.

    Free WordPress Themes | Fresh WordPress Themes